博碩士論文 105327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.143.23.176
姓名 劉沛霆(Pei-Ting Liu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 外型輪廓順應量測之擴散光學成像比較研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環形檢測機制是目前較普遍的近紅外光擴散光學(near infrared diffuse optical imaging, NIR DOI)檢測機制,其檢測方式是將光源與光偵測器環狀排列在乳房周圍,擷取乳房內不同角度的光資訊用於光學係數影像重建。然而現有環形檢測機制的光源與光偵測器多設計為固定式光通道,無法順應受檢者乳房輪廓量測且影像重建的有限元素幾何模型並非受檢者真實的乳房輪廓,導致影像重建失真。因此本研究以兩種case的半橢球仿體模擬受檢者乳房垂置於檢測區的真實形狀,並設計一進一出掃描量測裝置( 1 Source , 1 Detector )與頻域式量測系統對半橢球仿體進行固定與彈性光通道掃描量測,量測光源使用830及785nm波長的雷射,雷射調變頻率以29.001MHz交流電源驅動,量測所得光資訊以本實驗室發展之光學係數影像重建軟體進行光學系數影像重建,並以根均方誤差(root mean square error, RMSE )評估影像品質,誤差越低代表重建影像與參考影像的越接近,為了降低吸收( Ua )及散射( Us’ )係數的數量級影響,以三種不同方式對根均方誤差值進行優化,經優化產生的 Error值(%)為本研究的影像品質評估方法,Error 值越低代表影像品質越好。
基於實驗結果顯示,在三種不同的Error值中比較,彈性光通道量測對於較易量測的高光學系數對比度( Ua , Us’ = 4 , 2 )大顆淺層腫瘤,Error( Ua )值最多降低約6%、Error( Us’ )值最多降低約1%以上,對於極難量測的低光學系數對比度( Ua , Us’ = 2 , 1 )小顆深層腫瘤,Error( Ua )值最多能降低約2%,因此證明無論腫瘤在淺層或深層位置及腫瘤的大小,彈性光通道量測皆能提高腫瘤特徵及降低重建影像與參考影像的誤差。而基於實驗結果之進步,設計彈性光通道機構裝置改良本實驗室的環形掃描機台的光通道,使其能順應受檢者乳房輪廓量測,消除檢測區域與乳房的間距,且在12個彈性光通道後端安裝光學式位移計用以估測計算受檢者乳房輪廓。
摘要(英) Ring-scanning mechanism is currently common near infrared diffuse optical imaging (NIR DOT). However, sources and detectors of the existing ring detection mechanisms are mostly as fixed channels, cannot adapt to the breast contour of the subject, cannot adapt to the breast contour , aresulting in image reconstruction distortion. In this research, two cases of semi-ellipsoid phantoms are used to simulate the true shape and design scanning measurement equipment (1 Source 1 Detector) and frequency-domain measurement system for fixed and flexible optical channel scanning measurement of semi-ellipsoid phantom, source uses 830nm and 785nm lasers, source frequency uses 29.001MHz, the obtained optical information is reconstructed by the optical-property images reconstruction software developed by our laboratory, evaluate image quality witht in three different Error(%) , The Error is optimized by root mean square error ( RMSE ).
Shown by the experimental results, flexible optical channel measurement for large superficial tumors with high optical coefficient contrast( Ua , Us’ = 4 , 2 ), Error( Ua ) reduced by about 6% at most, and Error( Us’ ) reduced at most about 1% or more. For small deep tumors with low optical coefficient contrast( Ua , Us’ = 2 , 1 ), Error( Ua ) reduced by about 2% at most. Therefore, no matter location or size of the tumor, flexible optical channel measurements can improve tumor characteristics image reconstruction errors. Based on experimental results, design a flexible optical channel mechanism to improve the optical channel of the circular scanning machine in our laboratory.
關鍵字(中) ★ 環形檢測機制
★ 半橢球仿體
★ 彈性光通道
★ 光學系數影像
★ 根均方誤差
關鍵字(英) ★ Ring-scanning mechanism
★ semi-ellipsoid phantoms
★ flexible optical channel
★ optical-property images
★ root mean square error
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 viii
一、緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 3
1-3 論文範疇 5
二、理論基礎 6
2-1 乳房組織光學特性 6
2-2 組織擴散光學檢測機制 10
2-3 擴散光學影像重建 11
三、實驗型一進一出光資訊掃描量測系統 16
3-1 系統架構 16
3-1-1 頻域式擴散光學量測技術 17
3-1-2 掃描裝置機構設計 18
3-1-3 掃描量測機制 20
3-1-4 人機介面與操作 22
3-2 系統元件特性測試 23
3-2-1 雷射模組 23
3-2-2 光偵測器端元件 25
3-2-3 電訊號處理元件 29
四、實驗設計與驗證 33
4-1仿體設計製作 33
4-1-1仿體材料與光學系數 33
4-1-2仿體參數設計 35
4-2仿體實驗與結果討論 36
4-2-1實驗架構 36
4-2-2仿體量測特性分析 37
4-2-3影像品質評估方法 38
4-2-4實驗結果 38
4-3彈性光通道機構裝置 45
五、結論與未來展望 47
5-1 結論 47
5-2 未來展望 48
參考文獻 49
參考文獻 [1] IARC, “Number of New Cases and Deaths in 2018, Both Sexs, All Ages,” Globocan 2018 WHO, 2018.
[2] E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong and M. Rebner, “Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening,” New England Journal of Medicine, 353(17), 1773-1783, 2005.
[3] 黃獻樑、程紹儀。乳癌的篩檢。台灣家庭醫學醫學會。取自 https://www.tafm.org.tw/ehc-tafm/s/w/ebook/people_other/journalContent/358。
[4] 郭文娟, “非侵入式生醫斷層影像簡介”, 師範大學光電科技研究所, 物理雙
月刊, 2006.
[5] E. A. Morris, L. Liberman, D. J. Ballon, M. Robson, A. F. Abramson, A. Heerdt and D. D. Dershaw, “MRI of occult breast carcinoma in a high-risk population,” American Journal of Roentgenology, 181(3), 619-626, 2003.
[6] Jia Wang, “Broadband Near-Infrared Tomography for Breast Cancer Imaging,” Doctoral Thesis of Dartmouth College, 138-145, 2009.
[7] B. W. Pogue, M. Testorf, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Optics Express, 1(13), 391-403, 1997.
[8] S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Applied Optics, 36(1), 180-213, 1997.
[9] S. B. Colak, M. B. van der Mark, G. W. ’t Hooft, J. H. Hoogenraad, E. S. van der Linden,
and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer
detection,” IEEE Journal of Selected Topics in Quantum Electronics, 5(4), 1143-1158, 1999.
[10] F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden and D. T. Delpy, “A 32- channel time-resolved instrument for medical optical tomography,” Review of Scientific Instruments, 71(1), 256-265, 2000.
[11] B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, Ulf L. O¨sterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology, 218(1), 261-266, 2001.
[12] R. Padmaram, “Design Fabrication and Testing of a Versatile and Low-Cost Diffuse Optical Tomographic Imaging System,” Master Thesis of Indian Institute of Science, 30-65, 2007.
[13] L. Wu, H. Zhao, X. Wang, X. Yi, W. Chen, F. Gao, “Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty,” Applied Optics, 53(30), 6970-9082, 2014.
[14] M. Mozumder, T. Tarvainen, A. Seppänen, I. Nissilä, S. R. Arridge, and V. Kolehmainen, “Nonlinear approach to difference imaging in diffuse optical tomography,” Journal of Biomedical Optics, 20(10), 105001, 2015.
[15] T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, Ulf L. O¨sterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” Journal of Biomedical Optics, 7(1), 72-79, 2002.
[16] X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen “Automated Region Detection Based on The Contrast-to-Noise Ratio in Near-Infrared Tomography, ” Applied Optics, 43(5), 1053-1062, 2004.
[17] N. Iftimia, X. Gu, Y. Xu and H. Jiang, “A Compact, Parallel-Detection Diffuse Optical Mammography System,” Review of Scientific Instruments, 74(5), 2836-2842, 2003.
[18] X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomedical Optics Express, 2(8), 2348-2353, 2011.
[19] G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu,“Combined Diffuse Optical Tomography (DOT) and MRI System for Cancer Imaging in Small Animals, ” Technology in Cancer Research and Treatment , 5(4), 351-366, 2006.
[20] T. Yates, J. C. Hebden, A. P. Gibson, L. Enfield, N. L. Everdell, S. R. Arridge, and D. T. Delpy, “Time-Resolved Optical Mammography Using A Liquid Coupled Interface,” Journal of Biomedical Optics, 10(5), 054011, 2005.
[21] S. M. W. Y. van de Ven, S. G. Elias, M. A. A. J. van den Bosch, P. Luijten and W. P. Th.M. Mali, “Optical imaging of the breast,” Cancer Imaging, 8(1), 206-215, 2008.
[22] T. Yates, J. C Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, M. Douek, “Optical Tomography of The Breast Using A Multi-Channel Time-Resolved Imager,” Physics in Medicine and Biology, 50(11), 2503-2517, 2005.
[23] M. L. Altoe, J. E. Gunther, E. Lim, H. K. Kim, J. Campbell, H. Hibshoosh, K. Crew, K. Kalinsky, D. L. Hershman, A. H. Hielscher, “Baseline Oxygen Saturation Comparison between Pathologic Complete Responders and Extensive Residual Cancercases in Response to Neoadjuvant Chemotherapy,” Proc SPIE, 10059, 100590Q, 2017.
[24] B. Alacam, B. Yazici1, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images
of indocyanine green for breast tumors using near-infrared optical methods,” Physics in Medicine and Biology, 53(4), 837-859, 2008.
[25] R. Al Abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical Imaging System for Breast Cancer Detection,” Journal of the Optical Society of America, 28(12), 2473-2493, 2011.
[26] M, Patachia, S. G. Banita, C. M. Popa, D. C. Dumitras, “Continuous wawe diffuse optical tomography system tested on phantoms and animal tissues,” Romanian Reports in Physics, 67(2), 412-422, 2015.
[27] 游釗銘。頻域式擴散光學造影之乳房掃描暨檢測系統研究。國立中央大學機械工程研究所博士論文,2015。
[28] E. Vandeweyer, and D. Hertens, “Quantification of Glands and Fat in Breast Tissue: An Experimental Determination,” Annals of Anatomy, 184(2), 181-184, 2002.
[29] G. Maskarinec, I. Pagano, G. Lurie, L. R. Wilkens, L. N. Kolonel, “Mammographic Density and Breast Cancer Risk: The Multiethnic CohortStudy,” American Journal of Epidemiology, 162(8), 743-752, 2005.
[30] V. A. McCormack, I. dos S. Silva, “Breast Density and Parenchymalpatterns Asmarkers of Breast Cancer Risk: A Meta-Analysis,” Cancer Epidemiology, Biomarkers & Prevention, 15(6),1159-1169, 2009
[31] M. J. Yaffe, “Mammographic density Measurement of Mammographic Density,” Breast Cancer Research, 10(3), 209, 2008.
[32] Terese Winslow LLC U.S. Gov, “Breast Cancer Anatomy and How Cancer Starts,” National Breast Cancer Foundation, 2011.
https://nbcf.org.au/about-breast-cancer/diagnosis/breast-cancer-anatomy/
[33] 美國癌症協會-加州華人分會。取自http://www.acs-ccu.org。
[34] A.Rim and M. Chellman-Jeffers, “Trends in Breast Cancer Screening and Diagnosis,” Cleveland Clinic Journal of Medicine, 75(1), 2-9, 2008.
[35] National Breast and Ovarian Cancer Centre, “Breast Cancer Risk Factors: A Review
of Theevidence,” National Breast and Ovarian Cancer Centre, Surry Hills, NSW, 2009.
[36] L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate,” Science, 253(5021), 769-771, 1991.
[37] L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, “True Scattering Coefficients of Turbid Matter Measured by Early-Time Gating,” Optics Letters, 20(8), 913-915, 1995.
[38] B. Eriksson and R. Nowak, “Bounds and Reconstruction Techniques for Time-Resolved Transillumination imaging,” 2007.
https://www.semanticscholar.org/paper/BOUNDS-AND-RECONSTRUCTION-TECHNIQUES-FOR-IMAGING-Eriksson-Nowak/3b79c2b17e63f05287f49788542905ed0c0e1e41
[39] Oregon Medical Laser Center, “Optical Properties Spectra,”
http://omlc.org/index.html.
[40] A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical
spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4014-4019, 2007.
[41] A. H Hielscher, “Optical Tomographic Imaging of Small Animals,” Current Opinion in Biotechnology, 16(1),79-88, 2005.
[42] V. Nadhira, D. Kurniadi, E. Juliastuti, and A. Sutiswan, “Study of Continuous-Wave domain Fluorescence Diffuse Optical Tomography for Quality Control on Agricultural Produce,” AIP Conference Proceedings, 1589(1), 276-280, 2014.
[43] T. Durduran, R. Choe, W. B. Baker and A. G. Yodh, “Diffuse Optics for Tissue Monitor Ingand Tomography,” Reports on Progress in Physics, 73(7), 076701, 2010.
[44] B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of Imaging Geometries for Diffuse Optical Tomography of Tissue,” Optics Express, 4(8), 270-286, 1999.
[45] 陳亮瑜。Reconstruction and evaluation of d iffuse o ptical i maging。國立中央大學機械工程研究所博士論文,2013。
[46] 石珮君。多重光電倍增管校正模組設計製作及其於擴散光學斷層造影系統應用。 國立中央大學機械工程研究所碩士論文,2017。
[47] Hamamatsu, “Photomultiplier Tubes Basics and Applications Third Dition,” Hamamatsu Hotonikusu Kabushiki-gaisha, Japan.
[48] Hamamatsu, “Photomultiplier Tubes-Construction and Operating Characteristics Connections to External Circuits,” Hamamatsu Hotonikusu Kabushiki-gaisha, Japan.
[49] Hamamatsu, “Photomultiplier Tubes and Assemblies for Scintillation Counting and High Energy Physics,” Hamamatsu Hotonikusu Kabushiki-gaisha, Japan.
[50] Hamamatsu Hotonikusu Kabushiki-gaisha Electron Tube Division, “Photomultiplier Tube Modules,” Hamamatsu Hotonikusu Kabushiki-gaisha, 24-25, 2015.
[51] F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive Index of Some Mammalian Tissues Using A Fiber Optic Cladding Method,” Applied Optics, 28(12), 2297-2303, 1989.
[52] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of The Refractive Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Optics Letters, 20(21), 2258-2260, 1995.
[53] B. W. Pogue, and M. S. Patterson, “Review of Tissue Simulating Phantoms for Optical Spectroscopy, Imaging and Dosimetry,” Journal of Biomedical Optics, 11(4), 041102, 2006.
[54] G. M. Hale and M. R. Querry, “Optical Constants of Water in The 200 nm to 200 µm Wavelength Region,” Applied Optics, 12(3), 555-563, 1973.
[55] B. A. Brooksby, “Combining Near Infrared Tomography and Magnetic Resonance Imaging to Improve Breast Tissue Chromophore and Scattering Assessment,” Doctoral Thesis of Dartmouth College, 85-93, 2005.
[56] 林沂凌。平板式擴散光學斷層造影系統之乳房腫瘤檢測研究。國立中央大學機械工程研究所碩士論文,2015。
[57] M. Pan, C. Chen, L. Chen, M. Pan, Y. Shyr, “Highly Resolved Diffuse Optical Tomography: A Systematic Approach Using High-Pass Filtering for Value-Preserved Images.” Journal of Biomedical Optics, 13(2), 024022, 2008.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明