博碩士論文 105327024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.206.177.17
姓名 張惟傑(Wei-Jie Chang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 繞射分波元件於混合型太陽能系統之應用
(Application of Diffractive Splitting Element in Hybrid Solar System)
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 多重曲率之聚光元件應用於聚光型太陽能電池系統
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 可撓式白光有機發光二極體光雪與色彩分析之研究★ 有機發光二極體之軟性基板散熱設計及壽命改善之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-19以後開放)
摘要(中) 本論文的目的為建立一種新式的太陽能分波系統,其概念為利用繞射光學元件(Diffractive Optical Elements, DOE)中的閃耀光柵元件(Blazed Grating)設計一個完整的分波系統,將太陽光分離成兩個波段:可見光波段(380-780nm)與紅外光波段(780-2520nm)。
本研究將製作一個7 units的太陽光分波系統,藉由設計閃耀光柵的表面結構使+1階與0階繞射光分別在可見光波段與紅外光波段有良好的繞射效率進行分波,並配合透鏡的聚光特性與波導的V溝結構使+1階與0階繞射光分別經由全內反射至波導兩側,用以達成分離可見光與紅外光的目標。分離出的可見光可應用在太陽能照明系統或矽太陽能電池,而分離出的紅外光則可應用在熱電裝置或鍺(Ge)太陽能電池,因此若能結合此分波系統與其他太陽能系統,便能形成混合式太陽能系統,使太陽光所有頻譜的能量都盡可能被利用和轉換,藉此提升太陽能的使用效率。
摘要(英) This paper aims to present a new type of solar splitting system. The concept is to design a complete splitting system to split solar spectrum into visible region (380-780nm) and infrared region (780-2520nm) by using the Blazed Grating which is a kind of Diffractive Optical Elements (DOE).
We will manufacture a 7 units solar splitting system in this research. By designing the surface structure of blazed grating, the +1 order and 0 order diffracted light will have high diffraction efficiency in the visible and infrared region, respectively. After combining the concentrate characteristic of lens and the v-groove structure of light-guide, the +1 order and 0 order diffracted light will be totally reflected to the sides of the light-guide, respectively and achieves the purpose of splitting. The visible light can be utilized in solar lighting system or silicon solar cells and infrared light can be utilized in thermo-electric devices or Ge (germanium) solar cells, which makes the solar energy be utilized and converted as much as possible for improving the utilization efficiency of solar energy.
關鍵字(中) ★ 太陽能分波
★ 閃耀光柵
★ 導光板
關鍵字(英) ★ Solar splitting
★ Blazed grating
★ Light-guide
論文目次 第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 5
1-2-1 分波元件技術 5
1-2-2 聚光與導光技術 9
1-3 研究動機與目的 12
1-4 論文架構 13
第二章 基礎理論與原理 14
2-1 幾何光學理論(Geometrical Optics Theory) 14
2-2 波動光學理論(Wave Optics Theory) 14
2-2-1 繞射(Diffraction) 14
2-2-2 干涉(Interference) 15
2-3 全內反射理論(Total Internal Reflection ,TIR) 15
2-4 菲涅爾損失(Fresnel Loss) 15
2-5 光柵理論(Grating Theory) 17
2-5-1 光柵繞射理論(Grating Diffraction Theory) 17
2-5-2 純量繞射理論(Vector Diffraction Theory) 18
2-5-3 閃耀光柵(Blazed grating) 18
2-6 發散角(Divergence Angle) 19
2-7 積分球的原理與立體角 20
2-7-1 朗伯餘弦定理(Lambert’s Cosine Law) 20
2-7-2 立體角 20
2-7-3 積分球結構 21
2-8 小結 22
第三章 整體結構設計與模擬 23
3-1 整體結構之設計理念 23
3-2 效率定義 24
3-2-1 閃耀光柵效率定義 24
3-2-2 整體系統效率定義 25
3-3 聚光元件 26
3-4 閃耀光柵設計與模擬 27
3-4-1 閃耀光柵材料與設計 28
3-4-2 光柵繞射角與效率比較 31
3-4-3 抗反射層coating模擬 33
3-5 導光板設計與模擬 34
3-5-1 V溝結構分析 34
3-5-2 菲涅爾損失、材料光學性質、太陽發散角模擬 35
3-5-3 導光板設計 35
3-5-4 7units陣列結構之效率模擬 38
3-6 小結 39
第四章 實驗量測與結果討論 40
4-1 實驗儀器設備與量測方法 40
4-1-1 元件測量 40
4-1-2 7units系統量測 40
4-2 實驗結果討論 47
4-2-1 閃耀光柵結構量測分析 47
4-2-2 導光板V溝結構量測分析 48
4-2-3 結合框架與7 units結構之模擬效率分析 49
4-2-4 陣列結構光功率量測分析 50
4-2-5 陣列結構光譜量測分析 56
4-3 效率分析 58
4-4 誤差分析 60
4-4-1 環境雜散光 60
4-4-2 其他階級繞射效率 60
4-5 小結 62
第五章 結論與未來展望 63
5-1 結論 63
5-2 未來展望 64
參考文獻 [1] 徐育田,“CIGS薄膜太陽能電池吸收層之特性研究”,國防大學理工學院化學及材料工程學系碩士論文,2014年。
[2] 謝明諺,“單晶矽與多晶矽太陽能模組實測研究”,國立中央大學光電科學與工程學系碩士論文,2013年。
[3] 王佑庭,“以濺鍍法與表面鈍化處理製作矽異質接面太陽能電池”,國立中央大學光電科學與工程學系碩士論文,2013年。
[4] R. H. V. Leest, P. Mulder, N. Gruginskie, S. C. W. V. Laar, G. J. Bauhuis, H. Cheun, H. Lee, W. Yoon, R. V. D. Heijden, E. Bongers, E. Vlieg, and J. J. Schermer, “Temperature-Induced Degradation of Thin-Film III–V Solar Cells for Space Applications,” Institute of Electrical and Electronics Engineers Journal of Photovoltaics, 7, 702-708 (2017).
[5] B. Gai, Y. Sun, H. Lim, H. Chen, J. Faucher, M. L. Lee, and J. Yoon, “Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics,” American Chemical Society Nano, 11, 992-999 (2017).
[6] P. V. Kamat, “Hybrid Perovskites for Multijunction Tandem Solar Cells and Solar Fuels. A Virtual Issue,” American Chemical Society Energy Letters, 3, 28-29 (2018).
[7] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, “Dye-sensitized solar cells for efficient power generation under ambient lighting,” Nature Photonics, 11, 372-378 (2017).
[8] A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Yeh, and M. Grtzel, “Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers,” Angewandte Chemie, 126, 3017-3021 (2014).
[9] M. Urbani, M. Gratzel, M. K. Nazeeruddin, and T. Torres, “Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells,” Chemical Reviews, 114, 12330-12396 (2014).
[10] 林柏志,“太陽光電熱能輔助熱泵熱水器之自給自足控制系統設計研究”,大葉大學電機工程學系碩士論文,2014年。
[11] H. M. Steinhagen, and F. Trieb, “Concentrating Solar Power: A Review of the Technology,” Ingenia Information QR Academy English, 18, 43-50 (2004).
[12] Z. Ren, “Thermoelectric Cooling by Holey Silicon and the Role of Thermal conductivity Anisotropy,” University of California (2017).
[13] Web page from: Pinterest :
http://webstore.iec.ch/publication/3880.
[14] Web page from: Thermoelectric thermoelectric chips : http://www.tande.com.tw/te-power-generators.htm.
[15] T. Nakamura, “Optical waveguide system for solar power applications in space,” International Society for Optics and Photonics Proceedings, 7423 (2009).
[16] 郭日升,“用於晝光收集之非對稱光耦合器之數值模擬與實驗之比較”,國立臺北科技大學光電工程研究所碩士論文,2014年。
[17] 張謙允,黎倩如,鄭哲瑋,“太陽集光器結合人工光源之室內照明應用”,設計學報第16卷第2期,2011年。
[18] M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery and R. R. King, “40% efficient sunlight to electricity conversion,” Progress in Photovoltaics: Research and Applications, 23, 685–691 (2015).
[19] 陳垣佑,“具光柵結構之螢光太陽能聚合器導光特性研究”,國立中興大學機械工程研究所碩士論文,2014年。
[20] N. Mohammad, P. Wang, D. J. Friedman and R. Menon, “Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic,” Optics Express, 22, A1519-A1525 (2014).
[21] 李廷彥,“繞射/折射複合透鏡最佳單元組件研究”,國立交通大學光電工程研究所碩士論文,2005年。
[22] R. K. Kostuk, J. Castro, B. Myer, D. Zhang and G. Rosenberg, “Holographic Elements in Solar Concentrator and Collection Systems,” The International Society for Optical Engineering, 7407:74070E (August 2009).
[23] R. K. Kostuk, G. Rosenberg, “Analysis and Design of Holographic Solar Concentrators”, Proceedings of International Society for Optics and Photonics, 7043, 70430I-1 (2008).
[24] 張志宏,“全像光柵在參雜含偶氮染料於多相態液晶之研究”,國立中山大學物理研究所碩士論文,2005年。
[25] R. Kostuk, J. E. C. Aguilella, and J. M. Russo, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” High and Low Concentration for Solar Electric Applications II, 6649, 66490I (2007).
[26] 王一帆,“利用體積式全像術製作分光元件”,國立雲林科技大學光電工程研究所碩士論文,2010年。
[27] T. K. Gaylord, and M. G. Moharam, “Analysis and Applicationsof Optical Diffraction by Gratings,” Proceedings of the Institute of Electrical and Electronics Engineers, 73, 5 (1985).
[28] M. G. Moharam and T. K. Gaylord, “A Coupled-wave analysis of reflection gratings,” Applied Optics, 20, 2 (1981).
[29] T. K. Gaylord, M. G. Moharam, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” Optical Society of America, 12, 5 (1995).
[30] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” Journal of the Optical Society of America, 72, 10 (1982).
[31] J. R. Sze, M. H. Lu, “Design and fabrication of a dense wavelength division demultiplexer with grism structure,” Optical Engineering, 44, 025006 (2005).
[32] C. Michel, P. Blain, L. Clermont, F.Languy, C. Lenaerts, K. F. Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V.V. Thalluri, C. Henrist, P. Colson, J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Solar Energy, 157, 1005-1016 (2017).
[33] J. Nilsson, R. Leutz, B. Karlsson, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator,” Solar Energy Materials & Solar Cells, 91, 525–533 (2007).
[34] N. H. Vu and S. Shin, “A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators,” Energies, 16 (2016).
[35] J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Optics Express, 19, A673-A685 (2011).
[36] P. Xie, H. Lin, Y. Liu, and B. Li, “Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers,” Optics Express, 22, A1389-A1398 (2014).
[37] W. J. Smith, Modern Optical Engineering, McGraw-Hill Education, 3th ed., Chap. 1-4 (2000).
[38] 蕭善尹,“側聚光型太陽能電池系統之容忍角增益研究”,國立中央大學機械工程學系碩士論文,2017年。
[39] 賴浚洋,“利用色差分光之太陽能分光系統”,國立中央大學機械工程學系碩士論文,2017年。
[40] 洪佩芳,“高分子光柵應用於太陽光分光元件”,國立中央大學機械工程學系碩士論文,2016年。
[41] 施至柔,“利用稜鏡光柵製作高密度分波解多工系統和分色贗無繞射相位繞射元件之研究”,國立交通大學光電工程學系博士論文,2005年。
[42] National Renewable Energy Laboratory, Reference solar spectral irradiance: Astm g-173 (2015).
[43] 徐錦淵,“高亮度LED光電熱特性量測與分析”,國立交通大學平面顯示技術碩士論文,2010年。
[44] I. G. Kavakli and K. Kantarli, “Single and Double-Layer Antireflection Coating on Silicon,” Turkish Journal of Physics, 26 (2002).
[45] J. H. Karp, E. J. Tremblay and J. E. Ford, “Planar micro-optic solar concentrator,” Optics Express, 18, 1122-1133 (2010).
指導教授 韋安琪(An-Chi Wei) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明