博碩士論文 105328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.142.98.108
姓名 黃柏霖(Bo-Lin Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 隨機奈米粒子模型應用於OLED 出光增益之研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以數值模擬及實驗驗證隨機奈米粒子模型應用於有機發光二極體(Organic Light Emitting Diode, OLED)出光增益之參數優化之研究。
近年來,OLED成為熱門的新興節能產品, OLED具有面光源、低能耗、可撓曲、發光柔和等優點,但因開發時間較晚,OLED的發光強度與壽命尚遜於LED,若想要取代LED在市場上的地位與後續micro LED的發展衝擊,勢必要有重大的技術突破。在許多提升OLED發光強度的研究中,於OLED結構中加入奈米金屬粒子層,可引發局域性表面電漿共振效應(Localized Surface Plasmon Resonance, LSPR),進而有效且直接地提升其電致發光強度的特性。
本研究針對LSPR應用於增益OLED發光強度進行以預測為目的之模擬研究,藉由建構粒子隨機位置分佈及隨機大小之模擬模型,模擬實際蒸鍍之金屬奈米粒子的LSPR效應;於實驗,本研究在ITO玻璃上進行銀金屬奈米粒子佈局,提升OLED元件之出光效益,並驗證模擬結果與LSPR效應於OLED元件中發光增益之趨勢。根據本研究的模擬結果,以實際量測參數建立之隨機銀奈米粒子模型,模擬引發表面電漿共振效應的吸收譜,其峰值範圍約落在480nm~550 nm;在實驗結果證實以銀奈米粒子層引發LSPR可確實提升OLED出光之波段位於藍綠光,約1.24~1.34倍且波長峰值約藍移28nm。
摘要(英) The purpose of this research is to analyze the localized surface plasmon resonance (LSPR) in the organic light emitting diodes (OLED) device by a random particle distribution model.
In numerical simulation, silver particles are considered we set-up a simulate process to build a model in a random location and sizes of particles to simulate the LSPR effect on film particles based on a physical vapor deposition (PVD) case. In the experiment, we used E-gun evaporation to deposit silver nanoclusters (SNCs) on ITO/glass, to verify the emitting gain of OLED by LSPR and the accuracy of the luminous gain to compare with the simulation results.
According to our calculated results, the difference size and distribution of the nanoparticle or the surrounding material with the higher refractive index both causes the LSPR occurrence. The LSPR effect depends on parameters such as metal type, nanostructure size, and metallic film thickness. The thickness of the silver layer and size of the SNCs could be tuned by changing the deposition time and rate. By increasing the thickness of Ag nanoparticle, the peak value of absorption cross section will be red-shift. By raising the refractive index of the surrounding media, it can also cause the peak red-shift. While increasing the particle diameters and expanding the gap between the Ag nanoparticles, the absorption peak value will become blue-shift. By adjusting the LSPR wavelength to the emitting wavelength of an OLED device, the emission intensity of the OLED can be enhanced.
關鍵字(中) ★ OLED模擬
★ 局域性表面電漿共振效應
★ 隨機奈米粒子模型
關鍵字(英) ★ OLED
★ LSPR
★ Random particle distribution
論文目次 摘要 I
目錄 IV
圖目錄 VI
表目錄 VIII
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究動機 10
1-4 論文架構 11
第二章、基礎理論與原理 12
2-1 有機發光二極體 12
2-2 局域性表面電漿理論 15
2-2-1 表面電漿共振特性 15
2-2-2 電磁波於物質中的傳播特性[37] 17
2-2-3 電磁波與金屬奈米粒子的交互作用 18
2-2-4 金屬奈米粒子之尺寸對局域性表面電漿共振吸收波長的影響 19
2-2-5 金屬奈米粒子於不同介質中對局域性表面電漿共振吸收波長的影響 20
2-2-6 金屬奈米粒子間之交互作用對局域性表面電漿共振吸收波長的影響 21
2-2-7 銀奈米粒子在不同粒徑下之顏色 22
2-3 小結 23
第三章、研究方法與架構 24
3-1 研究方法 24
3-2 數值模擬方法 26
3-2-1 有限元素法(Finite element analysis) 26
3-2-2 電磁波方程式 28
3-2-3 吸收、散射及消光截面 28
3-2-4 模型幾何結構 30
3-2-5 完美匹配層(Perfectly Matched Layer) 32
3-2-6 Floquet 週期性邊界條件 34
3-2-7 材料參數 35
3-3 小結 36
第四章、實驗方法與量測 37
4-1 樣品製作及機台介紹 38
4-1-1 樣品製作 38
4-1-2 電子槍蒸鍍機(E-gun evaporator) 40
4-1-3 原子力顯微鏡 42
4-1-4紫外-可見光分光光譜儀 43
4-2小結 45
第五章、模擬模型之驗證與討論 46
5-1 銀薄膜試片的製程及量測 46
5-2 隨機模型之建構及模擬結果 50
5-2-1 隨機分佈模型置於空氣中模擬之結果 51
5-2-2 隨機分佈模型置於OLED結構中模擬之結果 53
5-3 具銀薄膜之OLED元件的出光光譜量測 54
5-4 模擬與實驗結果比對分析 56
5-5 小結 59
第六章、結論與未來展望 60
6-1 結論 60
6-2 未來展望 61
參考文獻 62
參考文獻 [1]台達電子文教基金會-低碳生活月刊-2007年
http://lowestc.blogspot.tw/2007/12/blog-post_12.html
[2]台灣WORD-固態照明
http://www.twword.com/wiki.html
[3]LED特性,取自: 聯勝光電股份有限公司
http://een.ctu.edu.tw/ezfiles/16/1016/img/833/LED05.pdf
[4]對人眼無害的綠色照明,取自: Web page from 人民網
http://lady.big5.anhuinews.com/system/2002/07/23/000069448.shtml.
[5]Consumer electronics: OLED encapsulation with unique barrier tapes from tesa Annual Press Conference: Consumer electronics: OLED encapsulation with unique barrier tapes from tesa, 2014.
[6]PIDA,” OLED技術現況與展望” , 2008
[7]工研技術研究院,工業技術與資訊月刊- “288期10月號”, 2015.
[8]M. Moskovits, “Surface-Enhanced Spectroscopy”, Review of Modern Physics, Vol. 57, No. 3, Part I, 1985.
[9]J. Vuckovic et al., “Surface Plasmon Enhanced Light-Emitting Diode”, IEEE Journal of Quantum Electronics, Vol. 36, No. 10, pp.1131-1144, 2000.
[10]K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, Vol.107, pp.668-677, 2003.
[11]Anatoly V. Zayatsa, Igor I. Smolyaninovb, Alexei A. Maradudinc “Nano-optics of surface plasmon polaritons”, Physics Reports 408, 2005.
[12]Katherine A.Willets and Richard P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annual Reviews, 2007.
[13]Steven G. Johnson, “Notes on Perfectly Matched Layers (PMLs)”, March 10, 2010.
[14]A. Kumar et al., “Efficiency Enhancement of Organic Light Emitting Diode via Surface Energy Transfer Between Exciton and Surface Plasmon”, Organic Electronics, Vol. 13, pp. 159-165, 2012.
[15]A. Kumar et al., “Surface Plasmon Enhanced Blue Organic Light Emitting Diode with Nearly 100% Fluorescence Efficiency”, Organic Electronics, Vol. 13, pp. 1750-1755, 2012.
[16]J. S. Jung et al., “Luminescence Variation of Organic Alq3 Nanoparticles on Surface of Au Nanoparticles and Graphene”, Synthetic Metals, Vol. 162, pp. 1852-1857, 2012.
[17]S. H. Chen et al., “Light Enhancement of Plasmonic Nanostructures for Polymer Light-Emitting Diodes at Different Wavelengths”, Applied Physics Express, Vol. 5, 062001, 2012.
[18]Illhwan Lee, Jae Yong Park, Kihyon Hong, Jun Ho Son, Sungjun Kima and Jong-Lam Lee ” The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes,” Nanoscale, 8, 6463–6467, 2016.
[19]Jingting Yu, Wenqing Zhu, Guanjie Shi, Guangsheng Zhai,Bingjie Qian and Jun Li “Simultaneous enhancement of photo- and electroluminescence in white organic lightemitting devices by localized surface plasmons of silver nanoclusters “, Nanotechnology, pp. 8, 2017.
[20]藍翊瑄 「銀奈米微粒吸收光譜分析」,國立中央大學,碩士論文,93年。
[21]B. W. D’ Andrade, S. R. Forrest, “White Organic light-emitting devices for solid-state lighting,” Advanced Materials, pp. 1585-1595, 2004.
[22]Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R. "Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs)", Advanced Materials, pp. 572-582, 2010.
[23]D′Andrade, B. W.; Forrest, S. R. "White Organic Light-Emitting Devices for Solid-State Lighting". Advanced Materials, pp.1585–1595, 2004.
[24]有機發光二極體,取自: Web page from 科學Online
http://highscope.ch.ntu.edu.tw/wordpress/?p=2931.
[25]R. Meerheim, B. Lussem, K. Leo, ”Efficiency and stability of p-i-n type organic light emitting diodes for display and lighting applications,” Proc. IEEE, 97, pp. 1606-1626 , 2009.
[26]黃瀚毅,”有機發光二極體熱特性模擬研究”,國立中央大學,民國105年碩士論文
[27]OIDA, “Organic Light Emitting Diodes (OLEDs) or General Illumination Update 2002”, 2002.
[28]陳金鑫、陳錦地和吳忠幟,白光OLED照明,五南出版社,2009年。
[29]陳金鑫和黃孝文編輯,OLED有機電激發光材料與元件,五南,新北市,民國94年。
[30]M. C. Tam et al., “Surface-Plasmon-Enhanced Photoluminescence from Metal-Capped Alq3 Thin Films”, Applied Physics Letters, Vol. 95, 051503(3pp), 2009.
[31]H. Raether, “Surface Plasmons”, Springer, New York, 1988.
[32]國立台北科技大學,奈米光學電磁材料技術研發中心,Raman spectra-拉曼光譜分析檢測使用及管理辦法
[33]國立嘉義大學應用物理學系,奈米粒子在Fabry-Perot 共振腔內其光譜之研究
[34]K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annual Review of Physical Chemistry, Vol. 58, pp.267-297, 2007.
[35]Anatoly V. Zayats, Igor I. Smolyaninov, Alexei A. Maradudin, “Nano-optics of surface plasmon polaritons”, 2004
[36]成大物理系,光電模擬實驗室,表面電漿子激發。
[37]李冠卿,近代光學,聯經出版事業公司,1988年。
[38]成大物理系,光電模擬實驗室,電漿子學原理與應用。
[39]張勝雄、戴朝義,奈米電漿子波導元件於積體光學之應用,物理雙月刊,2008年。
[40]邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊(廿八卷二期)2006 年。
[41]N. W. Ashcroft, and N. D. Mermin, “Solid State Physics”, page 6, 2001.
[42]U. Kreibig et al., “Optical Properties of Metal Clusters”, Springer, Berlin, 1995.
[43]A. Liebsch, “Surface-Plasmon Dispersion and Size Dependence of Mie Resonance: Silver Versus Simple Metals”, Physical Review B, Vol. 48, No. 15, pp. 317-328, 1993.
[44]曾賢德,「金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作」,物理雙月刊,32卷2期129頁,2010。
[45]S. Underwood et al., “Effect of the Solution Refractive Index on the Color of Gold Colloids”, Langmuir, Vol. 10, pp.3427-3430, 1994.
[46]Steven J. Oldenburg, “Silver Nanoparticles: Properties and Applications”, nanoComposix, Inc.
[47]Xi-Feng Zhang, Zhi-Guo Liu, Wei Shen, Sangiliyandi Gurunathan, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches”, Molecular Sciences, 2016.
[48]Bo-Hong Lee, Ming-Sheng Hsu, Yuan-Chin Hsu, Cheng-Wei Lo, and Cheng-Liang Huang, “A Facile Method To Obtain Highly Stable Silver Nanoplate Colloids with Desired Surface Plasmon Resonance Wavelengths”, Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan, 2010.
[49]王冒成,有限單元法,清華大學出版社,北京,2003年。
[50]"What′s The Difference Between FEM, FDM, and FVM?" Machine Design, 2016.
[51]U. Kreibig et al., “Optical Properties of Metal Clusters”, Springer, Berlin, 1995.
[52]Steven G. Johnson “Notes on Perfectly Matched Layers (PMLs)”, 2010
[53]電磁波的解說,http://www.qsl.net/vr2ls/EM-wave/EM-wave-01.html
[54]J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, Vol. 114, pp. 185-200, 1994.
[55]Floquet週期邊界條件
https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_acous/acousfpbc.html
[56]P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379, 1972.
[57]R. J. Moerland and J. P. Hoogenboom. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors, Optica 3, 112-117 , 2016.
[58]A. Ciesielski, L. Skowronski, M. Trzinski, T. Szoplik. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing, Appl. Surf. Sci. 421B, 349-356, 2017.
[59]R. J. Moerland and J. P. Hoogenboom. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors, Optica 3, 112-117 , 2016.
[60]J. Chan, Albert W. Lu, Alan Man Ching Ng, A. B. Djuri?i?, A. D. Raki?, "Organic quantum well light emitting diodes", 2015.
[61]物理氣相沉積(PVD)介紹 - 國家奈米元件實驗室,楊雲凱
[62]ALB Materials, “What is e-beam evaporation?”
[63]Azonano, “Fundamentals of Contact Mode and Tapping Mode Atomic Force Microscopy”, , 2012.
[64]原子力顯微鏡(Atomic Force Microscopy)成像原理,成功大學醫學工程所生醫感測實驗室
指導教授 韋安琪(An-Chi Wei) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明