博碩士論文 105328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.146.221.144
姓名 蕭峰奇(Fong-Ci Siao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究
(Enhanced thermal conductivity and high resistance of polyimide composites with fillers of graphene and ceramic powders)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能
★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯(graphene)因具有良好的導熱(導熱係數高達5300 W/mK)、載子傳輸速率、機械強度、光穿透率、化學穩定性等特性,進而廣泛地被應用在各個領域上,其優異的熱傳導性質可以解決高分子材料最令人詬病的部分也就是熱性質方面的問題。本實驗將著重於在有機高分子中具有較佳熱安定性的聚亞醯胺(polyimide,PI),由於運用在電子元件的構裝或是半導體元件製作上,其製程溫度常需高達300℃以上。所以為了改良PI導熱不佳的性質須結合高導熱性質的填充劑,如石墨烯、陶瓷填料等,以期能提升導熱性質。
本論文將採用不同石墨烯,如氧化還原石墨烯(RGO)及電化學石墨烯(ECG),混合不同結構型態的陶瓷填料,如氧化鋁(Al2O3)、氮化硼(BN)及氧化鎂(MgO),並進一步探討粒徑大小、填隙率等參數,對於混成製作所得薄膜的導熱性質、表面電阻與薄膜機械性質之影響,以達到高性能PI膜的開發,未來可應用於高導熱、表面高電阻、耐高溫、可彎曲之電子元件、半導體元件製作。研究目標為聚亞醯胺/石墨烯/陶瓷填料之表面電阻維持在高於1011 Ω,且導熱係數>1 W/mK。
本研究總成果顯示: (1)石墨烯C/O比與層數對於導熱值的影響,高C/O比之石墨烯具有較佳的導熱性,而少層相對於多層具有較佳的導熱趨勢; (2)不同型態結構之陶瓷填料與石墨烯相互作用於高分子中,對薄膜機械性質的影響,其結果顯示石墨烯對於球體陶瓷填料,具有更加明顯的機械性質提升,增加薄膜可撓性及韌性,而多層石墨烯對於少層石墨烯能更明顯提升薄膜機械性質。其中在添加氧化鎂之後,薄膜機械性質大幅下降且易脆,但僅添加石墨烯濃度1 wt%之後,即可得具有可撓性之薄膜;(3)添加石墨烯後導熱值提升約1.4倍,目前可得到(i)氧化鋁濃度50 wt%,並添加RGO~2 wt%,可以得到導熱值1.22 W/mK,並同時維持表面高電阻、薄膜完整性且具韌性之薄膜。(ii)高填隙率之氧化鋁在濃度40 wt%,大小粒徑比1:12,並添加RGO~3 wt%,僅能得到導熱值約1.1 W/mK。(iii)氮化硼濃度50 wt%,並添加RGO~2 wt%,可以得到導熱值2.26 W/mK,約提升1.4倍且表面電阻>1011Ω。
除了以導熱係數及表面電阻外,我們另外觀察薄膜機械性質,分為是否為易脆及薄膜完整性之參數。薄膜完整性對於大面積生產具有相當重要的意義,而易脆將不利於其應用性,若是陶瓷填料填充含量過多將導致機械性質下降,而添加石墨烯可以在這之中擔任緩衝層,將其填充至高分子缺陷中,減少孔隙率,增加緻密性,進而提高柔韌性,獲得具有可撓性之薄膜。
本研究結合PI與石墨烯、陶瓷填料等,開發具有高導熱且同時保有表面高電阻,並能夠具有一定機械性質之薄膜。
摘要(英) Graphene has high mechanical strength and superb thermal conduction property (up to 5300 W/mK), in addition to flexibility, high mobility and optical transparency. Its excellent properties can improve the most repellent part of polymer materials, with regard to thermal properties. In this study, in order to achieve high surface resistance and high thermal conductivity in the polymer composite, various inorganic fillers including alumina (Al2O3), magnesium oxide (MgO) and boron nitride (BN) with different size were used alone or in combination with graphene to achieve thermally conductive and insulating properties. Polyimide (PI)/graphene (Gra)/ceramic powder composites were prepared by solution blending. In the case where the ceramic powder was separately added, the use of hybrid filler was found to be effective in increasing thermal conductivity of the composite. However, as the amount of addition increases, the mechanical strength of as-prepared film were decrease drastically. Therefore, the incorporation of graphene in this work not only increased the thermal conductivity but also enhance their mechanical properties. Multilayer graphene can significantly improve the mechanical properties of the film for few layers of graphene, especially in MgO. This was believed that the graphene additives may serve as buffer materials among PI/ceramics, which can fill the defect, reduce porosity, and increased density, thereby increasing flexibility. Furthermore, the thermal conductivity of composites, with only 2 wt% of Reduced graphene oxide (RGO) as additives, can significantly increase to 2.26 W/mK, approximately a 1.4-fold enhancement when compared with the results obtained using the same concentration of 50 wt% of hBN; the Al2O3 also has the thermal conductivity of about 1.2 W/mK at a concentration of 50 wt% and addition of RGO 2 wt%. The significant improvement in thermal conductivity can be attributed to the generation of effective thermal conductive pathways formed by graphene and various inorganic fillers in the composite. This study will discuss in detail the role of graphene in thermal conductivity and mechanical properties in composites.
關鍵字(中) ★ 石墨烯
★ 聚亞醯胺
★ 導熱
★ 表面電阻
關鍵字(英)
論文目次 摘要 I
Abstract III
誌謝 V
總目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 有機/無機混成材料 2
1-2-2 聚亞醯胺 3
1-2-3 石墨烯 4
第二章 研究背景與文獻回顧 8
2-1 熱傳導機制 8
2-2 高導熱複合膜 11
2-2-1 開發高導熱複合膜 11
2-2-2 高導熱填料 12
2-2-3 填料介面處理 14
2-2-4 填料結構形貌 17
2-3 實驗動機 19
第三章 實驗方法與步驟 20
3-1 實驗藥品及材料 20
3-1-1 聚醯胺酸 20
3-1-2 有機溶劑 20
3-1-3 石墨烯 21
3-1-4 其他藥品 23
3-1-5 樣品編號定義 24
3-1-6 材料 25
3-2 儀器 25
3-2-1 製程儀器 25
3-2-2 分析儀器 25
3-3 實驗流程及步驟 26
3-3-1 實驗流程 26
3-3-2 實驗方法 27
3-3-3 石墨烯前驅物之製備 28
3-3-4 陶瓷填料前驅物之製備 28
3-3-5 聚醯胺酸/陶瓷填料前驅物混成材料之製備 29
3-3-6 聚醯胺酸/石墨烯/氧化鋁前驅物混成材料之製備 29
3-3-7 聚亞醯胺/石墨烯/陶瓷填料混成薄膜之製備 29
3-4 儀器分析 30
3-4-1 超高真空冷場發射掃描式電子顯微鏡分析(CFE-SEM) 30
3-4-2 X射線光電子能譜儀表面化學元素分析(XPS) 30
3-4-3 界面材料熱阻及熱傳導係數量測儀分析(TIM Tester) 30
3-4-4 參數分析儀電性分析(Parameter Analyzer) 32
3-4-5 拉曼光譜儀分析(Raman spectroscopy) 34
第四章 結果與討論 35
4-1 聚亞醯胺/石墨烯混成薄膜之分析 35
4-2 聚亞醯胺/氧化鋁混成薄膜之分析 37
4-3 聚亞醯胺/石墨烯/氧化鋁混成薄膜之分析 43
4-3-1 石墨烯與氧化鋁混成之形貌分析 43
4-3-2 聚亞醯胺/電化學多層石墨烯/氧化鋁混成薄膜之分析 44
4-3-3 聚亞醯胺/氧化還原石墨烯/高填隙率氧化鋁混成薄膜之分析 47
4-3-4 聚亞醯胺/氧化還原石墨烯/高填隙率氧化鋁混成薄膜之SEM分析 48
4-3-5 聚亞醯胺/氧化還原石墨烯/高填充量氧化鋁混成薄膜之導熱係數 49
4-3-6 添加石墨烯對薄膜機械性質之影響 51
4-4 聚亞醯胺/石墨烯/氧化鎂混成薄膜之分析 54
4-4-1 聚亞醯胺/氧化鎂混成薄膜之分析 54
4-4-2 添加石墨烯對氧化鎂混成薄膜之影響 57
4-5 聚亞醯胺/石墨烯/氮化硼混成薄膜之分析 65
4-5-1 聚亞醯胺/氧化還原石墨烯/氮化硼混成薄膜之導熱係數 65
4-5-2 聚亞醯胺/氧化還原石墨烯/氮化硼混成薄膜之機械性質 66
4-6 總結本研究各種填充物隨濃度變化及優化參數 69
4-6-1 各種填充物隨濃度變化之導熱趨勢比較 69
4-6-2 本研究各優化條件的技術特徵 70
第五章 結論 72
參考文獻 73
參考文獻 1. Chujo, Y., Organic—inorganic hybrid materials. Current Opinion in Solid State and Materials Science, 1996. 1(6): p. 806-811.
2. Mir, S.H., L.A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa and A. Khosla, Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. Journal of The Electrochemical Society, 2018. 165(8): p. B3137-B3156.
3. Zhou, Y., F. Liu and H. Wang, Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review. Polymer Composites, 2017. 38(4): p. 803-813.
4. Kickelbick, G., Hybrid Materials – Past, Present and Future, in Hybrid Materials. 2014.
5. Ashby, M.F. and Y.J.M. Bréchet, Designing hybrid materials. Acta Materialia, 2003. 51(19): p. 5801-5821.
6. Qu, C., J. Hu, X. Liu, Z. Li and Y. Ding, Morphology and Mechanical Properties of Polyimide Films: The Effects of UV Irradiation on Microscale Surface. Materials, 2017. 10(11): p. 1329.
7. Chen, M., J. Yin, R. Jin, L. Yao, B. Su and Q. Lei, Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films. Thin Solid Films, 2015. 584: p. 232-237.
8. Sun, D., J. Yin, Y. Liu, H. Xiong and X. Liu, Research on the electrical conduction characteristic of polyimide/Al 2 O 3 nanocomposite films with low threshold field. Surface and Coatings Technology, 2017. 320: p. 53-58.
9. Liu, X., Y. Li, Y. Liu, D. Sun, W. Guo, X. Sun, Y. Feng, H. Chi, X. Li, F. Tian, B. Su and J. Yin, Performance and microstructure characteristics in polyimide/nano-aluminum composites. Surface and Coatings Technology, 2017. 320: p. 103-108.
10. Kuo, D.H., C.Y. Lin, Y.C. Jhou, J.Y. Cheng and G.S. Liou, Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN + ALN) composite films fabricated by a solution-cast method. Polymer Composites, 2013. 34(2): p. 252-258.
11. Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai and C.-S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012. 37(7): p. 907-974.
12. 胡瑜怡, 翁振剛, 林育瑛, 石燕鳳 and 金進興, 高熱傳導性聚醯亞胺複合材料之研究. 興大工程學刊, 2011. 22(3): p. 87-96.
13. Ngo, I.-L. and C. Byon, Thermal conductivity of particle-filled polymers. Polymer Science, 2016: p. 554-565.
14. Lee, G.-W., M. Park, J. Kim, J.I. Lee and H.G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A: Applied Science and Manufacturing, 2006. 37(5): p. 727-734.
15. Ngo, I.-L., S. Jeon and C. Byon, Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. International Journal of Heat and Mass Transfer, 2016. 98: p. 219-226.
16. Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011. 10: p. 569.
17. Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
18. Nair, R.R., P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308-1308.
19. Bonaccorso, F., A. Lombardo, T. Hasan, Z. Sun, L. Colombo and A.C. Ferrari, Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
20. Rowley-Neale, S.J., E.P. Randviir, A.S. Abo Dena and C.E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 2018. 10: p. 218-226.
21. Li, A., C. Zhang and Y.-F. Zhang, Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers, 2017. 9(9): p. 437.
22. Burger, N., A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 2016. 61: p. 1-28.
23. Chen, H., V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du and B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016. 59: p. 41-85.
24. Han, Z. and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 2011. 36(7): p. 914-944.
25. Shtein, M., R. Nadiv, M. Buzaglo, K. Kahil and O. Regev, Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects. Chemistry of Materials, 2015. 27(6): p. 2100-2106.
26. Zhou, Y., L. Wang, H. Zhang, Y. Bai, Y. Niu and H. Wang, Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Applied Physics Letters, 2012. 101(1): p. 012903.
27. Wang, T., M. Wang, L. Fu, Z. Duan, Y. Chen, X. Hou, Y. Wu, S. Li, L. Guo, R. Kang, N. Jiang and J. Yu, Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets. Sci Rep, 2018. 8(1): p. 1557.
28. Li, T.-L. and S.L.-C. Hsu, Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride. The Journal of Physical Chemistry B, 2010. 114(20): p. 6825-6829.
29. He, Z., W. Dai, J. Yu, L. Pan, X. Xiao, S. Lu and N. Jiang, Enhanced thermal and mechanical properties of polyimide composites by mixing thermotropic liquid crystalline epoxy grafted aluminum nitride. Journal of Polymer Research, 2014. 21(11).
30. Zhou, W., S. Qi, C. Tu, H. Zhao, C. Wang and J. Kou, Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007. 104(2): p. 1312-1318.
31. Xie, S.-H., B.-K. Zhu, J.-B. Li, X.-Z. Wei and Z.-K. Xu, Preparation and properties of polyimide/aluminum nitride composites. Polymer Testing, 2004. 23(7): p. 797-801.
32. Yang, X., X. Yu, K. Naito, H. Ding, X. Qu and Q. Zhang, Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler. J Nanosci Nanotechnol, 2018. 18(5): p. 3291-3298.
33. Dai, W., J. Yu, Y. Wang, Y. Song, H. Bai, K. Nishimura, H. Liao and N. Jiang, Enhanced thermal and mechanical properties of polyimide/graphene composites. Macromolecular Research, 2014. 22(9): p. 983-989.
34. Tseng, I.H., J.-C. Chang, S.-L. Huang and M.-H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polymer International, 2013. 62(5): p. 827-835.
35. Ma, L., G. Wang and J. Dai, Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Performance Polymers, 2016. 29(2): p. 187-196.
36. Qin, Y., Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He and Y. Li, Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano, 2015. 9(9): p. 8933-8941.
37. Dai, W., J. Yu, Y. Wang, Y. Song, F.E. Alam, K. Nishimura, C.-T. Lin and N. Jiang, Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. Journal of Materials Chemistry A, 2015. 3(9): p. 4884-4891.
38. Gong, J., Z. Liu, J. Yu, D. Dai, W. Dai, S. Du, C. Li, N. Jiang, Z. Zhan and C.-T. Lin, Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2016. 87: p. 290-296.
39. Chen, C.-H., S.-W. Yang, M.-C. Chuang, W.-Y. Woon and C.-Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale, 2015. 7(37): p. 15362-15373.
40. Bhattacharya, M., Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials, 2016. 9(4): p. 262.
41. Liu, J., Y. Yang, H. Hassanin, N. Jumbu, S. Deng, Q. Zuo and K. Jiang, Graphene–Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications. ACS Applied Materials & Interfaces, 2016. 8(4): p. 2607-2616.
42. Rafiee, M.A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 2009. 3(12): p. 3884-3890.
43. Kumar, P. and M. Wani, Synthesis and tribological properties of graphene: A review. Vol. 13. 2017. 36-71.
44. Atif, R. and F. Inam, Modeling and Simulation of Graphene Based Polymer Nanocomposites: Advances in the Last Decade. Graphene, 2016. Vol.05No.02: p. 47.
指導教授 蘇清源 審核日期 2018-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明