博碩士論文 105328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.97.14.82
姓名 周政憲(CHENG-HSIEN CHOU)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 平板式加壓型合成氣固態氧化物燃料電池實驗研究
(An Experimental Investigation on a Planar Pressurized Syngas Solid Oxide Fuel Cell)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用已建立之加壓型固態氧化物燃料電池(solid oxide fuel cell, SOFC)平板型(50mm*50mm)實驗載具與肋條式流道板,量測合成氣燃料,在不同操作條件(溫度、壓力、燃氣濃度及比例)下,其電池性能(IV-Curve)與電化學阻抗頻譜(EIS)之變化,並進行長時間性能穩定性測試。實驗條件為固定氣體流率(陰極空氣: 900 ml/min; 陽極燃料: 500 ml/min H2 + 400 ml/min N2或175 ml/min H2 (35%) + 325 ml/min CO (65%) + 400 ml/min N2)。當操作溫度從750oC提升至850oC,在固定操作電壓0.8V時,功率密度從105 mWcm-2增加到129 mWcm-2,提升了22.9%,這主要是歸因於溫度上升可有效降低歐姆阻抗,進而提升性能這可由EIS結果看出。使用合成氣在850oC時,壓力從1大氣壓升至5大氣壓時,壓力效應使電池性能增加約64.3%。但是,我們發現在從3大氣壓提升至5大氣壓時,電池性能提升會有所限制,這是因為高壓條件下容易受到碳沉積之影響。在固定電壓0.8V、1大氣壓、850oC下,電池可以穩定操作25小時以上,性能沒有衰退。但在3大氣壓時,電池操作約5小時之後,因碳沉積導致陽極管路嚴重堵塞,最後電池性能大幅衰退。這顯示在高壓環境下,使用合成氣為燃料進行長時間的操作,將會有碳沉積。在850oC條件下,進行不同燃料濃度(60%、40%、20%)的氫氣與合成氣之電池性能比較,發現氫氣與合成氣之OCV和最大功率密度會隨著稀釋度的增加而降低,而當燃料使用合成氣時,隨著燃料稀釋度的增加濃度極化阻抗會增加。合成氣在1atm、850oC,燃氣使用不同CO配比(100% CO、65% CO + 35% H2、50% CO + 50% H2、100% H2)進行電池性能比較,當純氫氣添加CO後,其電池性能會隨CO比例增加而變低,純氫的電池性能最高,而純CO的電池性能最低。從EIS上得知,當CO比例增加,其總極化阻抗會隨之增加,主要是影響低頻半圓之阻抗(氣體轉移阻抗)增加,表示總極化阻抗與氣體輸送過程密切相關。以上之實驗結果,有助於了解合成氣於SOFC在不同操作條件之電池性能變化,以及在不同操作環境之碳沉積現象,這對未來SOFC欲使用合成氣為燃料並結合微氣渦輪機(MGT),在基礎知識上,有所助益。
摘要(英) The thesis tests the cell performance and electrochemical impedance spectroscopy at different operating conditions (temperature, pressure, gas concentration and ratio) using syngas as a fuel in a pressurized solid oxide fuel cell with a planar single cell (50 mm×50 mm) stack and flow distributors. The flow rates are fixed for all experiments, i.e. the anode: 500 ml/min H2 + 400 ml/min N2 and/or 175 ml/min H2 (35%) + 325 ml/min CO (65%) + 400 ml/min N2; the cathode: 900 ml/min air. When the operating temperature increases from 750oC to 850oC, the cell performance at 0.8V increases from 105 mWcm-2 to 129 mWcm-2, a 22.9% increase. EIS data show that the ohmic impedance decreases with increasing T and thus the cell performance increases. When the operating pressure increases from 1 atm to 5 atm, the cell performance has a 64.3% increase. However, we find that the carbon deposition limits the performance increase when the pressure increases from 3 atm to 5 atm due to the carbon deposition at higher pressure. The stability test of the syngas SOFC at 850oC at 0.8V shows that the cell can be stably operated for at least 25 hours at 1 atm without any degradation of the cell power density. But at 3 atm and 0.8V, the cell performance begins to decay after 5 hours of operation, because of the severe carbon deposition that can even block the anode gas pipeline, indicating that the carbon deposition is a problem when syngas is used as a fuel in pressurized environment. At 850oC, we compare cell performance of hydrogen and syngas at different fuel concentrations (60%, 40%, 20% fuel mixing with nitrogen). The results show that the OCV and the power density of hydrogen and syngas SOFCs decrease with increasing dilution. When using syngas, the concentration polarization impedance increases as the fuel dilution increases. At 1 atm and 850oC, we compare cell performance using different CO ratios (i.e. 100% CO, 65% CO + 35% H2, 50% CO + 50% H2, 100% H2). When CO is added to pure hydrogen, the cell performance will decrease with the increase of CO ratio. The cell performance of pure hydrogen is the highest and pure CO is the lowest. EIS data show that as the CO ratio increases, the total polarization impedance increases. It mainly affects the impedance of the low frequency semicircle (gas transfer impedance), which is closely related to the gas transport process. These results help us understanding of syngas SOFC operated at different conditions and associated carbon deposition phenomena which should be useful for future power generation and combination with a micro gas turbine (MGT).
關鍵字(中) ★ 合成氣 SOFC
★ 穩定性測試
★ 電池性能與電化學阻抗頻譜
★ 碳沉積與加壓效應
關鍵字(英) ★ Syngas SOFC
★ Cell performance and electrochemical impedance spectroscopy
★ Stability test
★ Carbon deposition and pressurization effects
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vi
圖表目錄 ix
符號說明 xi
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 4
1.4 論文綱要 4
第二章 文獻回顧 6
2.1 燃料電池的歷史與發展 6
2.2 SOFC的簡介 7
2.2.1 SOFC基本元件 7
2.2.2 SOFC運作原理 9
2.2.3 SOFC電池設計與種類 10
2.3 SOFC之極化現象 11
2.3.1 歐姆極化 12
2.3.2 活化極化 12
2.3.3 濃度極化 13
2.4 EIS的基本原理與等效電路模組 13
2.5 SOFC使用合成氣之碳沉積與穩定性相關文獻 16
第三章 實驗設備與量測方法 26
3.1 高壓SOFC測試平台 26
3.2 實驗流程與量測參數設定 28
第四章 結果與討論 35
4.1 溫度效應對於氫氣與合成氣之性能與阻抗頻譜分析 35
4.2 壓力效應對於合成氣之性能與阻抗頻譜分析 36
4.3 合成氣SOFC性能穩定性研究 37
4.4 燃料稀釋及改變燃料比例對電池性能與阻抗頻譜之影響 38
第五章 結論與未來工作 51
5.1 結論 51
5.2 未來工作 52
參考文獻 53
參考文獻 參考文獻
[1] S. K. Dong, “Design and numerical analysis of a planar anode-supported SOFC stack,” Renewable Energy, Vol. 94 pp. 637-650, 2016.
[2] S. C. Singhal, “Advances in solid oxide fuel cell technology,” Solid state ionics, Vol. 135, pp. 305-313, 2000.
[3] M. M. Hussain, X. Li, I. Dincer, “A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells,” Journal of Power Sources, Vol. 189, pp. 916-928, 2009.
[4] J. Karl, N. Frank, S. Karellas, M. Saule, U. Hohenwarter, “Conversion of syngas from biomass in solid oxide fuel cells” J Fuel Cell Sci Technol, Vol 6, pp. 0210051-0210056, 2009.
[5] S. R. Gamble, J. T. S. Irvine, “8YSZ/ (La0.8Sr0.2)0.95MnO3–δ cathode performance at 1–3 bar oxygen pressures,” Solid State Ionics, Vol. 192, pp. 394-397, 2011.
[6] S. H. Jensen, X. Sun, S. D. Ebbesen, R. Knibbe and M. Mogensen, “Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells,” International journal of hydrogen energy, Vol. 35, pp. 9544-9549, 2010.
[7] M. Henke, C. Willicha, C. Westner, F. Leucht, R. Leibinger, J. Kallo, and K. A. Friedrich, “Effect of pressure variation on power density and efficiency of solid oxide fuel cells,” Electrochimica Acta, Vol. 66, pp. 158-163, 2012.
[8] Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, K. Takemobu, Development of next-generation large-scale SOFC toward realization of a hydrogen society, Mitsubishi Heavy Industries Technical Review, Vol. 52, pp. 111, 2015.
[9] R. J. Kee, H Zhu, A. M. Sukeshini, & G. S. Jackson, “Solid oxide fuel cells: operating principles, current challenges, and the role of syngas,” Combustion Science and Technology, Vol 180.6, pp. 1207-1244, 2008.
[10] M. Henke, J. Kallo, K. A. Friedrich, & W. GB. essler, “Influence of pressurisation on SOFC performance and durability: a theoretical study,” Fuel Cells, Vol 11.4, pp. 581-591, 2011.
[11] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[12] 謝易達,加壓型 SOFC 陽極支撐與電解質支撐單電池堆量測與分析,碩 士論文,國立中央大學,2013。
[13] 黃鎮江,“燃料電池修訂版”台北,全華科技圖書,2005.
[14] W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of fuel cells : fundamentals, technology, and applications, John Wiley and Sons Ltd., West Sussex, 2003.
[15] S. E. Veyo, L. A. Shockling, J. T. Dederer, J.E. Gillett, & W.L. Lundberg, “Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems—Status,” ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2000.
[16] O. Costa-Nunes, R. J. Gorte & J. M. Vohs, “Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas,” Journal of power sources, Vol 141.2, pp. 241-249, 2005.
[17] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, & T. Inagaki, “Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells,” Solid State Ionics, Vol 256, pp. 1-4, 2014.
[18] D. Cui, L. Liu, Y. Dong, & M. Cheng, “Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling,” Journal of power sources, Vol 174.1, pp. 246-254 2007.
[19] S. C. Singhal, “Solid Oxide Fuel Cells: An Overview, Preprints of Papers- American Chemical Society,” Division of Fuel Chemistry, Vol. 24, pp. 478-479, 2004.
[20] H. Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, & I. Yasuda, “Evaluation and modeling of performance of anode-supported solid oxide fuel cell,” Journal of Power Sources, Vol 86.1-2, pp. 423-431, 2000.
[21] Y. Patcharavorachot, A. Arpornwichanop, & A. Chuachuensuk, “Electrochemical study of a planar solid oxide fuel cell: Role of support structures,” Journal of Power Sources, Vol 177.2, pp. 254-261, 2008.
[22] R. J. Gorte, H. Kim, & J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons,” Journal of catalysis, Vol 216.1-2, pp. 477-486 2003.
[23] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2010。
[24] S. H Chan, K. A. Khor, & Z. T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness,” Journal of power sources, Vol 93.1-2, pp. 130-140 ,2001.
[25] M. Ni, M. K. Leung, & D. Y. Leung, “Parametric study of solid oxide fuel cell performance,” Energy Conversion and Management, Vol 48.5, pp. 1525-1535, 2007.
[26] C. Berger, “Handbook of fuel cell technology,” 1968.
[27] Q. A. Huang, R. Hui, B. Wang, & J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta, Vol 52.28, pp. 8144-8164, 2007.
[28] J. B. Jorcin, M. E. Orazem, N. Pébère, & B. Tribollet, “CPE analysis by local electrochemical impedance spectroscopy,” Electrochimica Acta, Vol 51.8-9, pp. 1473-1479, 2006.
[29] P. Zoltowski, “On the electrical capacitance of interfaces exhibiting constant phase element behaviour,” Journal of Electroanalytical Chemistry, Vol 443.1, pp. 149-154, 1998.
[30] A. Lanzini, P. Leone, C. Guerra, F. Smeacetto, N. P. Brandon, & M. Santarelli, “Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane,” Chemical engineering journal, Vol 220, pp. 254-263, 2013.
[31] M. S. Khan, S. B Lee, R. H. Song, J. W. Lee, T. H., Lim, & S. J Park “Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review,” Ceramics International, Vol 42.1, pp. 35-48, 2016.
[32] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M. W.Fowler, P.L. Douglas, S. Chewathankup, H. Mahaudom, “Experimental and modeling study of solid oxide fuel cell operating with syngas fuel,” Journal of Power Sources, Vol 161.1, pp. 308-322, 2006.
[33] C. Li, Y. Shi, & N. Cai, “Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas,” Journal of power sources, Vol 195.8, pp. 2266-2282 2010.
[34] J. Xiao, Y. Xie, J. Liu, & M. Liu, “Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels,” Journal of Power Sources, Vol 268, pp. 508-516, 2014.
[35] B Stoeckl, V. Subotić, M. Preininger, H. Schroettner, & C Hochenauer, “SOFC operation with carbon oxides: Experimental analysis of performance and degradation,” Electrochimica acta, Vol 275, pp. 256-264, 2018.
[36] X. F. Ye, S. R. Wang, J. Zhou, F. R. Zeng, H. W. Nie and T. L. Wen, “Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2–CO syngas fuels,” Journal of Power Sources, Vol. 195, pp. 7264-7267, 2010.
[37] H. Miao, W. G Wang, T. S Li, T. Chen, S. S Sun, & C. Xu, “Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells,” Journal of Power Sources, Vol 195.8, pp. 2230-2235, 2010.
[38] L. Z. Bian, Z. Y. Chen, L. J. Wang, F. S. Li, & K. C. Chou, “Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2-CO fuels,” International Journal of Hydrogen Energy, Vol 42.20, pp. 14246-14252, 2017.
[39] C. M. Huang, S. S. Shy, H. H. Li, & C. H. Lee, “The impact of flow distributors on the performance of planar solid oxide fuel cell,” Journal of Power Sources, Vol 195.19, pp. 6280-6286, 2010.
[40] V. A. C. Haanappel, M. J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ,” Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[41] P. C. Wu, and S. S. Shy. “Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1–5 atm and 750–850°C,” Journal of Power Sources, Vol 362, pp. 105-114, 2017.
[42] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y. L. Liu, & P. V. Hendriksen, “Detailed characterization of anode-supported SOFCs by impedance spectroscopy,” Journal of The Electrochemical Society, Vol 154.4, pp. B371-B378, 2007.
[43] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, & K. Eguchi,“Gas Transport impedance in segmented-in-series tubular solid oxide fuel cell,” Journal of The Electrochemical Society, Vol 158.2, pp. B215-B224, 2011.
[44] H. Tu, & U. Stimming, “Advances, aging mechanisms and lifetime in solid-oxide fuel cells,” Journal of power sources, Vol 127.1-2, pp. 284-293, 2004.
[45] K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, and Y. Uchida “Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases,” Journal of The Electrochemical Society, Vol 149.3, pp. A227-A233, 2002.
指導教授 施聖洋 審核日期 2018-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明