博碩士論文 105328022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.98.13
姓名 盧冠為(Kuan-Wei Lu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用電漿聚合膜提升光學薄膜與塑膠基板之附著性
(Improvement of Adhesion between Optical Film and Plastic Substrate by Using Plasma Polymerization Film)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學元件應用於日常生活中許多電子產品當中,而攜帶式電子產品輕量化的需求日益增加,塑膠基材的使用也顯得更加重要。但由於光學元件製作時,薄膜在塑膠基板上始終有附著性的不足。本實驗引入含高表面自由能之材料,利用電漿聚合技術鍍製高分子聚合膜,並鍍上光學薄膜材料二氧化矽(SiO2),探討各製程步驟對基板與光學薄膜之間附著性的改善原因。
本實驗使用PMMA、330R、480R、PC等四種光學級塑膠作為基材,在電漿蝕刻處理後,可使接觸面積增加並提升機械咬合力,表面粗糙度最大可提升至61.9 nm。經電漿表面前處理之後,其表面官能基活化產生羥基(–OH),可由水接觸角量測得知水接觸角最低可至超親水(低於10度),表示表面自由能的提升;前處理之持久性不佳,故鍍製具有含氮官能基的高分子聚合膜,可更有效提升其表面自由能,並且可由XPS觀察鍍製前後含氮百分比之上升,最高提升至2.25倍。經上述所有步驟後鍍上光學薄膜,雖然蝕刻無法提升所有基板之附著性,但沉積聚合膜後,四種基板皆達到完整無脫膜的效果,並良好保持基板與光學薄膜之光學性質。
摘要(英) Optical components are used in many electronic products in daily life. The demand for lightweight and portable electronic products is increasing, therefore, the use of plastic substrates becomes important. However, the insufficient adhesion on plastic substrates has been a serious problem of the production of optical components. In this experiment, a material with high surface free energy is introduced to deposit a polymer film by using plasma polymerization technique. The optical thin film material silicon dioxide (SiO2) was coated to investigate the improvement of the adhesion between the substrate and the optical film in each process step.
In the research, four plastic material, PMMA, 330R, 480R and PC, are used as substrates. The etching process has been adopted to increase the contact area. The surface roughness can be increased up to 61.9 nm. After plasma pretreatment on the substrate surface, the hydroxyl group are activated. The water contact angle can be measured less than 10 degrees, indicating that the surface free energy has been improved. Due to the poor persistent of the hydroxyl group, the polymer film with nitrogen-containing function groups is coated, which can improve the surface free energy more effectively. The increasing of the percentage of nitrogen can be observed by XPS. After the above steps, the optical films are coated. Although etching process cannot improve the adhesion of all the substrates, the four substrates achieve completely adhesion after depositing the polymer film. Besides, the optical property of the substrates is well maintained.
關鍵字(中) ★ 電漿聚合膜
★ 塑膠基板
★ 附著性
★ 光學薄膜
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 引言 1
1-2 實驗目的 3
1-3 研究內容 4
1-4 本文架構 5
第二章 基礎理論及文獻回顧 6
2-1 電漿 6
2-1-1 電漿的產生 6
2-1-2 電漿聚合 8
2-1-3 高分子膜聚合反應 11
2-2 薄膜沉積原理 13
2-2-1 電漿輔助化學氣相沉積 13
2-2-2 物理氣相沉積 14
2-3 附著力 15
2-3-1 粗糙度 16
2-3-2 表面自由能 17
2-4 表面能與水接觸角之關係 18
第三章 實驗方法及使用儀器設備 20
3-1 實驗流程 20
3-2 實驗介紹及步驟 21
3-2-1 實驗介紹 21
3-2-2 實驗步驟 21
3-3 實驗鍍膜系統 26
3-3-1 有機單體 26
3-3-2 光學薄膜選擇 27
3-3-3 實驗基板 28
3-3-4 實驗鍍膜系統 31
3-3-5 離子源系統 32
3-3-6 電子槍蒸鍍 34
3-4 實驗量測儀器 36
3-4-1 電漿光譜儀(OES) 36
3-4-2 可見光-近紅外光分光光譜儀 38
3-4-3 原子力學顯微鏡(AFM) 39
3-4-4 接觸角量測儀(CA) 41
3-4-5 百格刀 42
3-4-6 光學顯微鏡(OM) 44
3-4-7 X射線光電子能譜儀(XPS) 45
第四章 結果與討論 48
4-1 未處理基板之附著性 49
4-2 粗糙度對附著性的影響 51
4-3 表面能對附著性的影響 (前處理與電漿聚合膜) 53
4-3-1 電漿光譜 53
4-3-2 前處理對附著性的影響 56
4-3-3 電漿聚合膜對附著性的影響 59
4-3-4 XPS分析 61
4-3-5 高分子聚合膜對附著性之影響 63
4-4 光學性質 65
4-5 總結比較 67
第五章 結論 69
參考文獻 70
參考文獻 [1] Hornbeck, L.J., “Forming a low surface energy, wear resistant thin film on the surface of a device”. 1995, Google Patents.
[2] Trost, M., et al., “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers”. Applied optics, 2011. 50(9): p. C148-C153.
[3] Klersy, P.J., D.C. Jablonski, and S.R. Ovshinsky, “Thin-film structure for chalcogenide electrical switching devices and process therefor”. 1993, Google Patents.F. Garbassi, M. Morra, E. Occhiello, Polymer Surface: From Physics to Technology, John Wiley & Sons, Chichester, 1994.
[4] Daniel Ebert and Bharat Bhushan, “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles”, Langmuir 2012, 28, 11391?11399.
[5] F. Garbassi, M. Morra, E. Occhiello, “Polymer Surface : From Physics to Technology”, John Wiley & Sons, Chichester, 1994.
[6] Chi-Ming Chan, “Polymer Surface Modification and Characterization”, Hanser publishers, 1993.
[7] Oh-June Kwon, Shen Tang, Sung-Woon Myung, Na Lu, Ho-Suk Choi, “Surface characteristics of polypropylene film treated by an atmospheric pressure plasma”, Surface & Coatings Technology, 192, (2005), pp.1–10.
A. Bergeron, J.E. Klemberg-Sapieha, L. Martinu, “Structure of the interfacial region between polycarbonate and plasma depositred SiN1.3 and SiO2 optical coatings studied by ellipsometry”, J.Vac. Sci. Technol. A, 16(6), (1998), pp.3227-3234.
[8] J.E. Klemberg-Sapieha, D. Poitras, L. Martinu, “Effect of interface on the characteristics of functional films deposited on polycarbonate in dual-frequency plasma”, J.Vac Sci Technol.A, 15(3), (1997), pp.985-991.
[9] M.R. Wertheimer, A.C. Fozza, A. Hollander, “Industrial processing of polymers by low-pressure plasmas: the role of VUV radiation”, Nuclear Instruments and Methods in Physics Research B, 151, (1999), pp.65-75.
[10] A.C. Fozza, J. Roch, J.E. Klemberg-Sapieha, A. Kruse, A. Hollander, M.R. Wertheimer, “Oxidation and ablation of polymers by vacuum-UV irradiation from low pressure plasmas”, Nuclear Instruments and Methods in Physics Research B, 131, (1997), pp.205-210.
[11] A.C. Fozza, J.E. Klemberg-Sapieha, M.R. Wertheimer, “Vacuum Ultraviolet irradiation of Polymers”, Plasmas and Polymers, 4(213), (1999), pp.183-2049.
[12] F. Sarto, M. Alvisi, E. Melissano, A. Rizzo, S. Scaglione , L. Vasanelli, “Adhesion enhancement of optical coatings on plastic substrate via ion treatment”, Thin Solid Films 346, (1999), pp.196-201.
[13] Mariana D. Duca, Carmina L. Plosceanu & Tatiana Pop, “Surface modifications of polyvinylidene fluoride(PVDF) under RF Ar plasma, Polymer Degradation and Stability”, 61, (1998), pp.65-72.
[14] N. Sprang, D. Theirich, J.Engemann, “Plasma and ion beam surface treatment of polyethylene”, Surface and Coatings Technology 74-75, (1995), pp. 689-695.
[15] Ulrike Schulz, Peter Munzert, Norbert Kaiser, “Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion”, Surface and Coatings Technology 142-144, (2001), pp.507-511.
[16] 魏敬倫, “以反應性射頻磁控濺鍍搭配 HMDSO 電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究 ; Investigation of SiOx: C barrier films deposited by RF reactive magnetron sputtering coupled with HMDSO/O2 plasma polymerization”. 2012, 國立中央大學.
[17] 鄭敬龍, “以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究”, 光電科學與工程學系 , 國立中央大學, 桃園台灣, 2015.
[18] 楊士賢, “以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究”. 中原大學化學工程研究所學位論文, 2005: p. 1-117.
[19] 楊順文, “電漿聚合碳氮層-TPX複合膜應用於氧氮分離之研究”, 中原大學化學工程學系碩士論文, 2002.
[20] Q.Xie, J.Xu, L.Feng, L.Jiang, W.Tang, X.Luo, C.Han, “Facile creation creation of a super amphiphobic coating surface with bionic microstructure”, Adv.Mater., 16,pp.302-205, 2004.
[21] Lecoq, E., et al., “Plasma polymerization of APTES to elaborate nitrogen containing organosilicon thin films: influence of process parameters and discussion about the growing mechanisms”, Plasma Processes and Polymers, 2013. 10(3): p. 250-261.
[22] John L. Vossen, Werner Kern, “PECVD Reaction System”, Thin film processes II, p.532-536, 1991.
[23] J. Anthony von Fraunhofer, "Adhesion and Cohesion", Review Article, International Journal of Dentistry, Volume 2012, Article ID 951324, 8 pages.
[24] Rory Wolf, Amelia Carolina Sparavigna, "Role of Plasma Surface Treatments on Wetting and Adhesion", Engineering, 2010, 2, 397-402.
[25] Dirk Hegemann, Herwig Brunner, Christian Oehr, "Plasma treatment of polymers for surface and adhesion improvement", Nuclear Instruments and Methods in Physics Research B 208 (2003) 281–286.
[26] Anirban Sarkar and Theda Daniels-Race, "Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates", Nanomaterials 2013, 3, 272-288.
[27] Celia, E., et al., "Recent advances in designing superhydrophobic surfaces.", Journal of colloid and interface science, 2013. 402: p. 1-18.
[28] T. Young, "An essay on the cohesion of fluids", Trans. Roy. Soc. (London), 95, 65 (1805).
[29] W. A. Zisman, "Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution", 1964.
[30] 環烷烴結構. Available:
https://en.wikipedia.org/wiki/Cycloalkane
[31] 李正中, “光學薄膜與鍍膜技術”, 2006, 台北: 藝軒圖書出版社.
[32] 李其紘, “原子力學顯微鏡的基本介紹”, 科學研習, No. 52-5, 2013.
[33] D. H. Lee, X. M. He, K. C. Walter, M. Nastasi, J. R. Tesmer, M. Tuszewski, et al., "Diamondlike carbon deposition on silicon using radio-frequency inductive plasma of Ar and C2H2 gas mixture in plasma immersion ion deposition," Applied Physics Letters, vol.73, p.2423, 1998.
[34] X-ray photoelectron spectroscopy. Available:
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[35] 涂正中, “金屬奈米陣列結構於塑膠基材上光學性質研究”, 國立交通大學機械工程系所碩士論文, 2008, p. 14.
[36] Francis, A., et al., “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules.”, Applied physics letters, 1997. 71(26): p. 3796-3798.
[37] 潘彥妤, “微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用”, 中原大學化學工程研究所學位論文, 2008, p. 1-102.
[38] Clay, K., et al., “Characterization of a?C: H: N deposition from CH4/N2 RF plasmas using optical emission spectroscopy.”, Journal of applied physics, 1996. 79(9): p. 7227-7233.
[39] Crintea, D., et al., “Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering.”, Journal of Physics D: Applied Physics, 2009. 42(4): p. 045208.
[40] 梁文傑, “眾志成城的氫鍵化學鍵中的小矮人.”, Chemistry, 2004. 62: p. 43-58.
[41] S. Guruvenket , G.R.S. Iyer , L. Shestakova, P. Morgen, N.B. Larsen and G. Mohan Rao, Appl. Surf. Sci. 254, 5722-26, (2008).
[42] K. Tsougeni, P.S. Petrou, A. Tserepi, S.E. Kakabakos and E. Gogolides, Microelec. Engin. 86, 1424-42, (2009).
[43] Ch. Liu, N.-Y. Cui, S. Osbeck and H. Liang, Appl. Surf. Sci. 259, 840-46 (2012).
[44] U. Schulz, P. Munzert and N. Kaiser, Surf. Coat. Technol. 142-44, 507-11, (2001).
[45] T. Homola, J. Matousek, B. Herelova, M. Kormunda, L.Y.L. Wu and M. Cernak, Polym. Degrad. Stab. 97, 886-92, (2012).
[46] B. Hergelova, T. Homola, A. Zahoranova, T. Plecenik, "Plasma Surface Modification of Biocompatible Polymers Using Atmospheric Pressure Dielectric Barrier Discharge", WDS′12 Proceedings of Contributed Papers, Part II, 2012, 128–133.
[47] Sterpone, F., et al., “Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups.”, The Journal of Physical Chemistry B, 2010. 114(5): p. 2083-2089.
[48] C. D. Wagner, L. E. Davis, M. V. Zeller and J. A. Taylor, R. H. Raymond and L. H. Gale, "Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis.", Surface and Interface Analysis, Vol. 3, No. 5, 1981. p. 211-225.
[49] Fresnel equations. Available:
https://en.wikipedia.org/wiki/Fresnel_equations
指導教授 曹嘉文 郭倩丞 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明