博碩士論文 105328027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.149.229.253
姓名 洪藝庭(Yi-Ting Hung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 加壓型氨固態氧化物燃料電池之性能和穩定性量測
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用氫氣與氨氣進行電池性能與電化學阻抗頻譜比較其亦同性。使用已建立的固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)高溫高壓測試平台,並配合配合自製單電池堆載具,對平板式(50mm*50mm)陽極支撐型全電池(Ni-YSZ/YSZ/LSC-GDC),進行不同溫度、壓力、燃料濃度之性能曲線量測(IV-Curve)與電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS)分析。本實驗條件於壓力效應與溫度效應為固定氣體流率,陽極燃料:(1) 540 sccm H2 + 360 sccm N2或(2) 360 sccm NH3 + 180 sccm N2;陰極空氣為900sccm,氨氣含有三個氫比氫氣多1.5倍,故將原氫流量540 sccm調整為360 sccm的氨,使氨完全裂解後之氫濃度與流率與使用氫燃料相同。操作壓力為1、3、5大氣壓,每個壓力皆有三個不同的操作溫度(750°C、800°C、850°C)。有關燃料濃度效應的研究,我們使用三種不同燃料流率為(1)高濃度(675sccm H2+225sccm N2和450sccm NH3)、中濃度(450sccm H2 + 450sccm N2和300sccm NH3 + 300sccm N2)、低濃度(225sccm H2 + 675sccm N2和150sccm NH3 + 600sccm N2)。結果顯示,氨氣SOFC在850°C時,電流密度為350Acm-2,當壓力提升至3大氣壓與5大氣時,電池性能依序提升約9.6%、14.9%,且極化阻抗中顯示總極化阻抗會隨壓力上升而下降。氨氣分別在1大氣壓與5大氣壓操作溫度由750°C提升至850°C,電池性能分別提升28.9%和27%。說明無論在任何操作壓力下,提升操作溫度能提升電池性能,因溫度的增加可提升電解質層的離子傳導率與陽極的電子傳導率,故可降低歐姆阻抗。在改變燃料濃度條件下,當燃料濃度增加時,極化阻抗有降低的趨勢且電池性能有所提升。在700°C負載為0.8V之穩定性測試,發現電池性能在常壓及加壓(3atm)條件下,均維持穩定,說明氨氣SOFC可穩定操作於常壓與加壓環境中。本研究成果有助於未來開發加壓型氨SOFC與微氣渦輪機結合之複合式發電系統與可攜式的發電系統。
摘要(英) This thesis uses an established high-pressure solid oxide fuel cell (SOFC) testing platform with interconnectors forming a single-cell stack to measure the cell performance and electrochemical impedance spectroscopy (EIS) of an ammonia SOFC with a planar anode-supported cell (Ni-YSZ/YSZ/LSC-GDC, 50 *50 mm2). Experiments are conducted in a high-temperature, high-pressure and fuel concentration of solid oxide fuel cell (SOFC). Both hydrogen and ammonia fuel are used under various temperature and pressure conditions, so that effects of temperature and pressurization on the cell performance and EIS of ammonia SOFC can be explored. Then we compare the results of both ammonia and hydrogen SOFC. Experimental conditions are as follows. We apply constant flow rates, i.e. anode fuel: (1) 540 sccm H2 + 360 sccm N2 or (2) 360 sccm NH3 +180 sccm N2; cathode air: 900sccm. Ammonia contains three hydrogen atoms, which is 1.5 times higher than hydrogen. Thus, the ammonia flow rate is adjusted to 360sccm, so that ammonia and hydrogen can achieve the same hydrogen concentration and flow rate when T=750°C and above for 100% decomposition of NH3 to H2 and N2. The cell performance is measured over a range of pressure (p=1, 3, 5atm) and temperatures (T=750, 800, 850°C). As to the study of fuel concentration, there are three different fuel concentrations for both hydrogen and ammonia fuels for comparison: (1) high concentration (675 sccm H2 + 225 sccm N2 and 450 sccm NH3); (2) medium concentration (450 sccm H2 + 450 sccm N2 and 300 sccm NH3 + 300 sccm N2); (3) low concentration (225 sccm H2 + 675 sccm N2 and 150 sccm NH3 + 600 sccm N2), all case using 900 sccm air in cathode. The result shows that the ammonia SOFC at current density of 350 Acm-2 and 850°C. When increasing p from 1 atm to 3 atm and 5 atm, the ammonia cell performance can be improved 9.6% and 14.9%, respectively. From EIS data, we find that the total polarization resistances decrease with increasing pressure. When the operating temperature increases from 750°C to 850°C, the cell performance at 0.8V can be increased by 28.9% (1 atm) and 27.1% (5 atm), respectively, showing that increasing the temperature can improve the cell performance due to the increases of the ionic conductivity of the electrolyte layer and the electron conductivity of the anode, resulting in the decrease of the ohmic impedance. The condition of changing the fuel concentration, as the fuel concentration increases, the polarization resistance decreases and the cell performance increases. The stability test of ammonia SOFC about 25 hours operation show that the power density can be maintained stable without any degradation at both 1 atm and 3 atm when the temperature is kept at 700°C at 0.8V. Hence, ammonia SOFC can be continuously operated at both atmospheric and elevated pressure conditions. These results are useful for the future development of pressurized ammonia SOFCs either in a portable device or an integration with micro gas turbines for power generation.
關鍵字(中) ★ 加壓型氨SOFC
★ 平板式陽極支撐型全電池
★ 電池性能和電化學阻抗頻譜
★ 穩定性測
關鍵字(英) ★ Pressurized ammonia solid oxide fuel cell
★ planar anode supported full cell
★ cell performance and electrochemical impedance spectra
★ stability test
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xi
第一章 前言 1
1.1研究動機 1
1.2問題所在 2
1.3解決方法 4
1.4論文綱要 4
第二章 文獻回顧 6
2.1固態氧化物燃料電池(SOFC)基本介紹 6
2.2固態氧化物燃料電池(SOFC)原理與極化現象 7
2.2.1 SOFC原理 7
2.2.2歐姆極化 9
2.2.3活化極化 10
2.2.4濃度極化 11
2.3電化學阻抗頻譜與等效電路模組 11
2.4氨固態氧化物燃料電池文獻探討 14
2.5 SOFC壓力效應文獻探討 17
第三章 實驗設備與量測方法 27
3.1高溫高壓SOFC測試平台 27
3.2實驗流程與量測操作參數設定 29
第四章 結果與討論 35
4.1 氫氣和氨氣於不同壓力下之性能與阻抗頻譜比較 35
4.2 氨氣於不同壓力下溫度效應之性能比較 36
4.3 氫氣和氨氣於不同溫度下改變料濃度之比較 37
4.4 氨氣穩定性比較 38
4.5實驗後電池片分析 39
第五章 結論與未來工作 49
5.1 結論 49
5.2 未來工作 50
參考文獻 51
參考文獻 [1] H. Zhao, X. Hou, Q. Yang, Thermodynamic Study and Exergetic Analysis of the Integrated SOFC-GT-Kalina Power Cycle, Energy and Power Engineering, Energy, Vol. 10, pp. 43-64, 2018.
[2] Y. Komatsu, S. Kimijima, J.S. Szmyd, Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell-Micro Gas Turbine Hybrid System, Energy, Vol. 35, pp. 982-988, 2010.
[3] E. Baniasadi, I. Dincer, Energy and Exergy Analyses of a Combined Ammonia-Fed Solid Oxide Fuel Cell System for Vehicular Applications, International Journal of hydrogen energy, Vol. 36, pp.11128-11136, 2011.
[4] S. Farhad, F. Hamdullahpur, Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system, Journal of Power Sources, Vol. 195, pp. 3084-3090, 2010.
[5] Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, K. Takemobu, Development of next-generation large-scale SOFC toward realization of a hydrogen society, Mitsubishi Heavy Industries Technical Review, Vol. 52, pp. 111, 2015.
[6] https://www.ihi.co.jp/ihi/all_news/2018/technology/2018-5-16/index.html
[7] Q. Ma, R.R. Peng, L. Tian and G. Meng, Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells, Electrochemistry communications, Vol. 8, pp. 1791-1795, 2006.
[8] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, The Electrochemical Society Transition, Vol. 68, pp. 2751-2762, 2015.
[9] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui and K.Eguchi, Catalytic Influence if Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells, Fuel Cells, Vol. 15, pp.309-397, 2015.
[10] T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saitto, H. Iwal, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, K. Eguchi, Comparative Study of Ammonia‐fueled Solid Oxide Fuel Cell Systems, Fuel Cells, Vol. 17, pp. 383-390, 2017.
[11] A. Fuerte, R.X. Valenzuela, M.J. Escudero, and L. Daza, Ammonia as efficient fuel for SOFC, Journal of Power Sources, Vol. 192, pp. 170-174, 2009.
[12] 徐皓修,氨SOFC之實驗研究:陽極之稱與電解質支撐電池性能之比較,國立中央大學碩士論文,2016。
[13] 謝昇均,加壓型氨固態氧化物燃料電池之實驗研究,國立中央大學碩士論文,2018。
[14] M. Henke, J. Kallo, K. A. Friedrich, W. G. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study, Fuel Cells, Vol. 11, pp. 581-591, 2011.
[15] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo and K. A. Friedrich, Effect of pressure variation on power density and efficiency of solid oxide fuel cells, Electrochimica Acta, Vol. 66, pp. 158-163, 2012.
[16] P.C. Wu, S.S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1–5 atm and 750–850 °C, Journal of Power Sources, Vol. 362, pp.105-114, 2017.
[17] S.S. Shy, S.C. Hsieh, H.Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, Journal of Power Sources, Vol. 396, pp.60-67, 2018.
[18] M. C. Williams, J. P. Strakey, and S. C. Singhal, US distributed generation fuel cell program, Journal of Power Sources, Vol. 131, pp. 79-85, 2004.
[19] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley &Sons. Ltd., England, 2003.
[20] F. Zhao, and A. V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of power sources, Vol. 141, pp.79-95, 2005.
[21] J. Hanna, W. Y. Lee, Y. Shi, and A. F. Ghoniem, Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels, Progress in Energy and Combustion Science, Vol. 40, pp. 74-111, 2014.
[22] O. Siddiqui, and I. Dincer, A review and comparative assessment of direct ammonia fuel cells, Thermal Science and Engineering Progress, Vol. 5, pp. 568-578, 2018.
[23] A. B. Stambouli, Fuel cells: The expectations for an environmental-friendly and sustainable source of energy, Renewable and Sustainable Energy Reviews, Vol. 15, pp. 4507-4520, 2011.
[24] S. H. Chan, K. A. Khor, and Z. T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of power sources, Vol. 93, pp. 130-140, 2001.
[25] R. O′hayre, S. W. Cha, F. B. Prinz, and W. Colella, Fuel cell fundamentals, 2nd Edition, John Wiley & Sons. Ltd., 2009.
[26] A. Yahya, D. Ferrero, H. Dhahri, P. Leone, K. Slimi, and M. Santarelli, Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model, Energy, Vol. 142, pp. 932-943, 2018.
[27] 梁俊德,加壓型 SOFC 碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。
[28] J. R. Macdonald and E. Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition, A John Wiley & Sons, Inc., Canada, 2005.
[29] A. Wojcik, H. Middleton, and I. Damopoulos, Ammonia as a fuel in solid oxide fuel cells, Journal of Power Sources, Vol. 118, ppt. 342-348, 2003.
[30] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui,and K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, Journal of Power Sources, Vol. 305, pp. 72-79, 2016.
[31] M. Hashinokuchi, M. Zhang, R.Yokochi, T. Doi, and M. Inaba,. Enhanced Activity and Stability of Ni-Based Binary Anode in Direct NH3-Fueled SOFCs, ECS Transactions, Vol. 78, pp.1495-1500, 2017.
[32] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells, ACS applied materials & interfaces, Vol. 7, pp. 28701-28707, 2015.
[33] A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, Electrochemical and catalytic behaviors of Ni–YSZ anode for the direct utilization of ammonia fuel in solid oxide fuel cells, Journal of The Electrochemical Society, Vol. 162, pp. F1268-F1274, 2015.
[34] C. Willich, C. Westner, M. Henke, F. Leucht, J. Kallo, and K. A. Friedrich, Pressurized solid oxide fuel cells with reformate as fuel, Journal of The Electrochemical Society, Vol. 159, pp. F711-F716, 2012.
[35] Y. D. Hsieh, Y. H. Chan, and S. S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources, Vol. 299, pp. 1-10, 2015.
[36] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。
[37] C.M. Huang, S.S. Shy, H.H. Li, and C. H. Lee, The impact of flow distributors on the performance of planar solid oxide fuel cell, Journal of Power Sources, Vol. 195, pp. 6280-6286, 2010.
[38] V.A.C. Haanappel, and M. J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[39] S. Primdahl, and M. Mogensen, Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, Journal of the Electrochemical Society, Vol. 145, pp. 2431-2438, 1998.
[40] S. Primdahl and M. Mogensen, Gas diffusion impedance in characterization of solid oxide fuel cell anodes. Journal of the electrochemical society, Vol. 146, pp. 2827-2833, 1999.
[41] W. G. Bessler, and S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry. Journal of The Electrochemical Society, Vol. 154(6), pp. B548-B559, 2007.
[42] H. T. Lim, S. C. Hwang and J. S. Ahn, Performance of anode-supported solid oxide fuel cell in planar-cell channel-type setup, Ceramics International, Vol. 39, pp. S659-S662, 2013.
[43] M. Henke, J. Kallo, K. A. Friedrich, and W. G. Bessler, Influence of pressurisation on SOFC performance and durability: a theoretical study. Fuel Cells, Vol.11, pp. 581-591, 2011.
[44] G. G. M. Fournier, I. W. Cumming, and K. Hellgardt, High performance direct ammonia solid oxide fuel cell, Journal of power sources, Vol. 162, pp. 198-206, 2006.
[45] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, Catalytic Influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells, Fuel cells, Vol. 15, pp. 390-397, 2015.
[46] G. Meng, C. Jiang, J. Ma, Q Ma, and X. Liu, Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen, Journal of Power Sources, Vol. 173, pp. 189-193, 2007.
[47] V. Singh, H. Muroyama, T. Matsui, and K. Eguchi, Influence of Cell Design on the Performance of Direct Ammonia-Fueled Solid Oxide Fuel Cell: Anode-vs. Electrolyte-Supported Cell, ECS Transactions, Vol. 78, pp. 2527-2536, 2017.
指導教授 施聖洋(S. S. Shy) 審核日期 2018-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明