博碩士論文 105328030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.144.35.148
姓名 陳怡憲(Yi-Hsien Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
(The performance and stability enhancement on graphene-based conducting film by doping with fluorine-containing polymers)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究
★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能
★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討不同摻雜物摻雜於石墨烯上之熱穩定性及環境穩定性。由於以往的摻雜物,在摻雜後經過一段時間,其所貢獻的電性質表現優化效果,會隨著時間而流失,因此本研究主要為藉由摻雜全氟磺酸樹脂(Nafion)來使其改質後的電性質優化能維持。本實驗利用化學氣相沉積法成長石墨烯,接著經由濕轉將石墨烯轉印至目標基板上,再使用本研究所探討出的最佳全氟磺酸樹脂(Nafion)改質參數,使其形成保護層,達到提升電性質及穩定性之改質目的。
本研究透過比較摻雜氯化金(AuCl3)、氯化金(AuCl3)全氟磺酸樹脂(Nafion)、全氟磺酸樹脂(Nafion)於石墨烯之上的電性質表現,並將其放置於大氣環境及高溫環境中去追蹤其優化的時效性,本研究具體展現出 (1)單純透過摻雜全氟磺酸樹脂(Nafion)可將單層石墨烯原片電阻1100 Ω/sq降低到392 Ω/sq; (2)透過氯化金(AuCl3)全氟磺酸樹脂(Nafion)摻雜可將其片電阻降幅降至約63 %左右,在大氣環境及高溫環境中可維持其優化效果分別達到96天及7000分鐘; (3)1~4層石墨烯透過摻雜氯化金(AuCl3)全氟磺酸樹脂(Nafion),可將片電阻分別降至487 Ω/sq、351 Ω/sq、302 Ω/sq、158 Ω/sq,光穿透率於550 nm波段分別為98 %、95.2 %、92.8 %、89 %。
CVD成長法石墨烯具有大面積薄膜、高結晶性及高均勻性的特點,故擁有作為透明導電薄膜的潛力,但是由於石墨烯其片電阻值還過高,所以普遍透過改質來優化其電性質,而改質所得到的電性質優化,又容易隨著時間而流失其效果,故本研究提供一種可將其電性質優化,並能維持其優化效果的改質方法,未來可應用於透明導電薄膜及太陽能電池等。
摘要(英) The thermal and environmental stability of graphene doped with different dopants were investigated. As the performance optimization effect of the previous dopants will be lost with time after being doped for a period of time, this study mainly focuses on maintaining the electrical property optimization after modification through doped polyperfluorosulfonicacid (Nafion). In this experiment, graphene was grown by chemical vapor deposition method, and then the graphene was transferred to the target substrate via wet transfer, and the optimum modification parameters of polyperfluorosulfonicacid (Nafion) were obtained through this study to form a protective layer, so as to protect its modification effect.
This work through comparing gold chloride (AuCl3), gold chloride (AuCl3) polyperfluorosulfonicacid (Nafion), polyperfluorosulfonicacid (Nafion) in above the electrical properties of graphene, and place it in the atmospheric environment and the high temperature environment to track the effectiveness of optimization, this research show that (1) specific pure through the doping of polyperfluorosulfonicacid (Nafion) monolayer graphene can be glass resistance 1100 reduced to 392 Ω Ω/sq/sq. (2) through the doping of gold chloride (AuCl3) polyperfluorosulfonicacid (Nafion), the reduction of its chip resistance can be reduced to about 63 %, and its optimization effect can be maintained in the atmospheric environment and high-temperature environment for 96 days and 7000 minutes respectively. (3) 1 ~ 4 layers of graphene through doped gold chloride (AuCl3) polyperfluorosulfonicacid (Nafion), chip resistor can be respectively 487 Ω/sq, 351 Ω/sq, 302 Ω/sq, 158 Ω/sq, light transmittance in 550 nm band were 98%, 95.2%, 92.8% and 89% respectively.
Graphene CVD growth method has a large area of thin film, the characteristics of high crystallinity and high uniformity, so have potential as a transparent conductive film, but because of graphene its resistance value is still too high, so generally through modification to optimize its electrical properties, modification and optimization of electrical properties, and easily lost its effect over time, this research provides a kind of its electrical properties can be optimized and can maintain its optimization effect modification methods, the future can be applied to transparent conductive film and solar cells, etc.
關鍵字(中) ★ 石墨烯
★ 化學氣相沉積佱
★ 摻雜
關鍵字(英) ★ graphene
★ CVD
★ doping
論文目次 摘要 i
Abstract ii
總目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
第二章 研究背景與文獻回顧 4
2-1 化學氣相沉積法(Chemical vapor deposition) [1] 4
2-2 捲對捲微波電漿化學氣相沉積法(roll-to-roll microwave plasma chemical vapor deposition, R2R MWPCVD)[22] 4
2-3 捲對捲生產及轉印石墨烯[23] 6
2-4 螺旋繞捲 10
2-5 石墨烯濕式轉印及乾式轉印 12
2-6 石墨烯摻雜物 14
2-7 研究動機 19
第三章 實驗方法與步驟 20
3-1 實驗用品 20
3-2 實驗儀器 20
3-3 實驗流程 22
3-3-1 化學氣相沉積法 (Chemical vapor deposition) 22
3-3-2 批量生產化學氣相沉積法 (Batch to batch chemical vapor deposition) 24
3-3-3 濕式轉印方法 (Wet transfer) 26
3-3-4 石墨烯改質(Graphene doping) 26
氯化金(AuCl3)摻雜 26
全氟磺酸樹脂(Polyperfluorosulfonicacid,Nafion) 27
3-3-5 實驗步驟流程 29
第四章 結果與討論 30
4-1 批量生產化學氣相沉積法(Batch to batch chemical vapor deposition) 30
4-1-1 調整冷卻速率 30
4-1-2 調整成長時間 33
4-1-3 氧化銅箔基板降低二次成核 35
4-1-4 石墨紙繞捲化學氣相沉積法 37
4-2 石墨烯改質 40
4-2-1 全氟磺酸樹脂(Nafion)摻雜於石墨烯上不同濃度及薄膜厚度的電性質表現 40
4-2-2 均勻性對全氟磺酸樹脂(Nafion)的摻雜影響 46
4-2-3 加熱溫度對全氟磺酸樹脂(Nafion)的摻雜影響 51
4-2-4全氟磺酸樹脂(Nafion)/氯化金(AuCl3)摻雜於濕式轉印石墨烯 57
4-2-5全氟磺酸樹脂(Nafion)/氯化金(AuCl3)環境及高溫穩定性 59
第五章 結論 67
第六章 未來工作 67
參考文獻 68
參考文獻 1. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
2. Tetlow, H., J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J. Coraux, and L. Kantorovich, Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014. 542(3): p. 195-295.
3. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
4. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
5. Su, C.-Y., A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, and L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011. 5(3): p. 2332-2339.
6. Ciesielski, A. and P. Samori, Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 2014. 43(1): p. 381-98.
7. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008. 3(5): p. 270-4.
8. Wang, Y., X. Chen, Y. Zhong, F. Zhu, and K.P. Loh, Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009. 95(6): p. 063302.
9. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
10. An, H., W.-J. Lee, and J. Jung, Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011. 11(4): p. S81-S85.
11. Kim, E., H. An, H. Jang, W.-J. Cho, N. Lee, W.-G. Lee, and J. Jung, Growth of Few‐Layer Graphene on a Thin Cobalt Film on a Si/SiO2 Substrate. Vol. 17. 2011. 9-14.
12. Yu, Q., J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
13. Cushing, G.W., V. Johánek, J.K. Navin, and I. Harrison, Graphene Growth on Pt(111) by Ethylene Chemical Vapor Deposition at Surface Temperatures near 1000 K. The Journal of Physical Chemistry C, 2015. 119(9): p. 4759-4768.
14. Li, X., Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
15. Reina, A., H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, and J. Kong, Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
16. Kim, D., D. Lee, Y. Lee, and D.Y. Jeon, Work-Function Engineering of Graphene Anode by Bis(trifluoromethanesulfonyl)amide Doping for Efficient Polymer Light-Emitting Diodes. Advanced Functional Materials, 2013. 23(40): p. 5049-5055.
17. Ji, Q., L. Shi, Q. Zhang, W. Wang, H. Zheng, Y. Zhang, Y. Liu, and J. Sun, VO x effectively doping CVD-graphene for transparent conductive films. Applied Surface Science, 2016. 387: p. 51-57.
18. Li, X., D. Xie, H. Park, M. Zhu, T.H. Zeng, K. Wang, J. Wei, D. Wu, J. Kong, and H. Zhu, Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale, 2013. 5(5): p. 1945-8.
19. Han, T.H., S.J. Kwon, N. Li, H.K. Seo, W. Xu, K.S. Kim, and T.W. Lee, Versatile p-Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes. Angew Chem Int Ed Engl, 2016. 55(21): p. 6197-201.
20. Krajewska, A., K. Oberda, J. Azpeitia, A. Gutierrez, I. Pasternak, M.F. López, Z. Mierczyk, C. Munuera, and W. Strupinski, Influence of Au doping on electrical properties of CVD graphene. Carbon, 2016. 100: p. 625-631.
21. Gunes, F., H.J. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, J.Y. Choi, and Y.H. Lee, Layer-by-layer doping of few-layer graphene film. ACS Nano, 2010. 4(8): p. 4595-600.
22. Yamada, T., M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon, 2012. 50(7): p. 2615-2619.
23. Kobayashi, T., M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2).
24. Jo, I., S. Park, D. Kim, J.S. Moon, W.B. Park, T.H. Kim, J.H. Kang, W. Lee, Y. Kim, D.N. Lee, S.-P. Cho, H. Choi, I. Kang, J.H. Park, J.S. Lee, and B.H. Hong, Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Materials, 2018. 5(2).
25. Xu, J., J. Hu, Q. Li, R. Wang, W. Li, Y. Guo, Y. Zhu, F. Liu, Z. Ullah, G. Dong, Z. Zeng, and L. Liu, Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small, 2017. 13(27).
26. Kang, J., S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, B.H. Hong, M.K. Kim, and J.B. Choi, Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano, 2012. 6(6): p. 5360-5.
27. Kim, S.J., T. Choi, B. Lee, S. Lee, K. Choi, J.B. Park, J.M. Yoo, Y.S. Choi, J. Ryu, P. Kim, J. Hone, and B.H. Hong, Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett, 2015. 15(5): p. 3236-40.
28. Zaretski, A.V. and D.J. Lipomi, Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale, 2015. 7(22): p. 9963-9.
29. Jang, B., C.-H. Kim, S.T. Choi, K.-S. Kim, K.-S. Kim, H.-J. Lee, S. Cho, J.-H. Ahn, and J.-H. Kim, Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017. 4(2).
30. Zhang, Z., J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H.M. Cheng, and W. Ren, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
31. Cao, W., J. Li, H. Chen, and J. Xue, Transparent electrodes for organic optoelectronic devices: a review. Journal of Photonics for Energy, 2014. 4(1).
32. Han, T.-H., H. Kim, S.-J. Kwon, and T.-W. Lee, Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports, 2017. 118: p. 1-43.
33. Kwon, S.J., T.H. Han, T.Y. Ko, N. Li, Y. Kim, D.J. Kim, S.H. Bae, Y. Yang, B.H. Hong, K.S. Kim, S. Ryu, and T.W. Lee, Extremely stable graphene electrodes doped with macromolecular acid. Nat Commun, 2018. 9(1): p. 2037.
34. Paul, D.K. and K. Karan, Effect of Thermal Treatment on the Properties of Ultra-Thin Nafion Film. ECS Transactions, 2013. 50(2): p. 951-959.
35. 重慶墨希科技有限公司;中國科學院重慶綠色智能技術研究院. CN Patent NO. 104477898A (12 December, 2014)
36. 重慶墨希科技有限公司;中國科學院重慶綠色智能技術研究院. CN Patent NO. 204454598U (08 July, 2015)
37. Karlheinz Strobl, Mathieu Monville, et al., CVD graphene: Batch versus Roll to Roll Scale-up. October 31, 2014
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2018-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明