博碩士論文 105328036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.219.236.62
姓名 李明叡(Ming-Jui Lee)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工
(Crack-less Laser Machining of Alkali-free Glass by Two-step Irradiation Method with Multiple Wavelength Source)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在開發二步驟雷射照射法應用於薄玻璃基板之精密加工。採用一皮秒脈衝雷射系統,此系統可切換1064、532及355奈米三種波長之光源,並以200奈米厚之無鹼玻璃基板作為加工材料。此二步驟製程之第一步驟是改質製程,先以1064奈米波長之紅外線雷射直接照射於無鹼玻璃表面以進行改質,當無鹼玻璃吸收1064奈米雷射光之能量時,其溫度會上升並改變無鹼玻璃之吸光特性,經改質後的無鹼玻璃對於其他波長的雷射光吸收度也會提升。第二步驟是以355奈米波長之紫外線雷射直接照射於改質區域進行加工製程,吸光特性經改質後的區域對於紫外線雷射之吸收度提升後,此雷射加工所需最低能量之閾值會降低,因此可降低使紫外光雷射在改質區加工所需的雷射光功率,使得雷射精密加工較易進行,且可降低熱影響區。雷射照射參數方面,本研究先探討紅外光雷射之輸出功率、脈衝重複率 (Repetition rate)及照射時間對於改質區域生成與否之影響,在所探討之參數範圍內,單一脈衝輸出能量約在60 μJ,並在低重複率(2.5、5、10 kHz)條件下可生成範圍較大之改質區域,而加工時間則較無顯著影響。比較在改質區與非改質區紫外光雷射直接照射之加工結果,發現在非改質區無加工痕跡之加工條件在改質區內則可進行加工,說明了改質區的吸光特性確已改變,此加工變化分別以單點與直線掃描照射探討。最後,將經紅外光雷射改質與未改質之無鹼玻璃進行吸收度量測發現改質後的無鹼玻璃對於355奈米波長之吸收度有些微增加,顯示本製程擁有應用於玻璃微加工之可行性。
摘要(英) This study aims to develop a two-step laser irradiation method for precise machining on thin glass substrate using a picosecond pulsed laser micromachining system. This system is able to switch the picosecond laser to deliver one of the three wavelengths of 1064, 512, or 355 nm. The target substrate is thin alkali-free glass. The first step irradiation is for glass modification that involves irradiating the substrate with the picosecond pulsed beam operating at the wavelength of 1064 nm. The absorbed incident laser energy increases the local temperature of the glass and modifies its light absorptivity, not only for the wavelength of 1064 nm but also for other wavelengths of light. The second step is the precision laser machining, which is accomplished by irradiating the modified area with 355 nm ultraviolet light. Since the absorptivity of the alkali-free glass against UV laser is enhanced after the modification step, the threshold of laser machining on alkali-free glass would be decreased. Hence, the minimum power required for UV laser machining on the modified glass is reduced, thereby making processing easier. In this study, the influence of the three processing parameters, energy per pulse, pulse repetition rate and irradiation time on the machining quality is considered. Results show that a modified area was able to be generated under the processing parameters of energy per pulse of 60 μJ, pulse repetition rates of 2.5, 5, and 10 kHz, respectively. The irradiation time, however, is not that significant. In the step of UV laser machining, by using the same processing parameters on the modified and unmodified areas, the former can be processed, while the later has no effect. The same result can be obtained regardless of whether the machining is processed by single point irradiation or by line scanning. Finally, the absorption measurements on the modified and the unmodified non-alkali glass were conducted. It is found that the modified alkali-free glass has a slight increase in the absorption of the 355 nm wavelength. In summary, this study demonstrates the feasibility of the proposed scheme in laser glass micromachining.
關鍵字(中) ★ 無鹼玻璃
★ 雷射玻璃改質
★ 雷射玻璃微加工
★ 皮秒雷射
關鍵字(英) ★ alkali-free glass
★ laser glass modification
★ laser glass micro machining
★ picosecond laser
論文目次 Chapter 1 Introduction 1
1-1 Laser applications 1
1-2 Machining of glass 1
1-3 Literature review 2
1-3-1 Laser machining 2
1-3-2 Property modification of glass 4
1-4 Motivation 5
Chapter 2 Experimental Setup 6
2-1 Laser System 6
2-2 Glass specimen 8
2-3 Spectrophotometer 9
2-4 Ultrasonic cleaner 10
Chapter 3 Glass Modification Process 11
3-1 Definition and Identification of the Modified area 11
3-2 Output power level of IR laser 12
3-3 Preliminary experiment of modification process 13
3-4 Effect of pulse energy in modification process 20
3-5 Absorbance Measurement 23
3-6 Discussion of modified area 26
Chapter 4 Glass Machining Process 34
4-1 Output power level of UV laser 34
4-2 Preliminary experiment of machining process 35
4-3 Machining improvement for drilling 39
4-4 Machining improvement for grooving 41
Chapter 5 Repeatability 44
5-1 Repeatability in modification process 44
5-2 Repeatability in machining process 46
Chapter 6 Conclusions 49
Acknowledgements 51
References 52
Appendix 55
參考文獻 [1] Lott, G., Falletto, N., Devilder, P.J., & Kling, R., “Optimizing the processing of sapphire with ultrashort laser pulses.” Journal of Laser Applications 28 (2012): 022206.
[2] Bor, K.W., Chen, Y.A., Shorey, A. & Piech, G., “Thin Glass Substrates Development and Integration for Through Glass Vias (TGV) With Copper (Cu) Interconnects.” International Microsystems, Packaging, Assembly and Circuits Technology Conference (2012): 247-250.
[3] Lee, C.K., Chien, C.H., Chiang, C.W., Shen, W.W., Fu, H.C., Lee, Y.C., Tsai, W.L., Wang, J.C., Chang, P.C., Zhan, C.J., Lin, Y.M., Cheng, R.S., Ko, C.T., Lo, W.C., & Lu, Y.J., “Investigation of the process for glass interposer.” International Microsystems, Packaging, Assembly and Circuits Technology Conference (2013): 405-408.
[4] Ostholt, R., Ambrosius, N., & Krüger, R.A., “High speed through glass via manufacturing technology for interposer.” Electronics System-Integration Conference (2014): 49-51.
[5] Hidai, H., Yamazaki, T., Itoh, S., Hiromatsu, K., & Tokura, H., “Metal particle manipulation by laser irradiation in borosilicate glass.” Optics Express 18.19 (2010): 20303-20320.
[6] Delmdahl, R., & Paetzel, R., “Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging.” Journal of the Microelectronics and Packaging Society 21.2 (2014): 53-57.
[7] Gecys, P., Dudutis, J., and Raciukaitis, G., “Nanosecond Laser Processing of Soda-Lime Glass.” Journal of Laser Micro/Nanoengineering 10.3 (2015): 254-258.
[8] Meyer, B.J., Staupendahl, G., Müller, F.A., & Gräf, S., “Sensitive ablation of brittle materials with pulsed CO2 laser radiation.” Journal of Laser Applications 28 (2016): 012002.
[9] Hwang., D.J., Hiromatsu, K., & Hidai, H., “Self-guided glass drilling by femtosecond laser pulses.” Applied Physics A (2009) 94: 555-558.
[10] Lv, J., Dong, X., Wang, K., Duan, W., Fan, Z., & Mei, X., “Study on process and mechanism of laser drilling in water and air.” The International Journal of Advanced Manufacturing Technology 86 (2016): 1443-1451.
[11] Huang, H., Yang, L.M., & Liu, J., “Micro-hole drilling and cutting using femtosecond fiber laser.” Optical Engineering 53.5 (2014): 051513.
[12] Yoshioka, M., Hidai, H., & Tokura, H., “CW-laser induced modification in glasses by laser backside irradiation (LBI).” SPIE Conference Proceedings 6106 (2006): 61060Y
[13] Shinomoto, R., Ito, Y., Kizaki, T., Tatsukoshi, K., Fukasawa, Y., Nagato, K., Sugita, N., & Mitsuishi, M., “Experimental Analysis of Glass Drilling with Ultrashort Pulse Lasers.” International Journal of Automation Technology 10 (2016): 863-873.
[14] Goya, K., Itoh, T., Seki, A., & Watanabe, K., “Efficient deep-hole drilling by a femtosecond, 400 nm secondharmonic Ti:Sapphire laser for a fiber optic in-line/ pico-literspectrometer.” Sensors and Actuators B 210 (2015): 685-691.
[15] Witzendorff, V.P., Bordin, A., Suttmann, O., Patel, R.S., Bovatsek, J., & Overmeyer, L., “Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses.” In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXI, 9735, 97350J (2016).
[16] Wang, H., Shen, H., & Yao, Z., “A Two-Step Model for Multiple Picosecond and Femtosecond Pulses Ablation of Fused Silica.” Journal of Manufacturing Science and Engineering 141 (2019): 061004
[17] Behera, R.R., & Sankar, M.R., “State of the art on Under Liquid Laser Beam Machining.” Materials Today: Proceedings 2 (2015): 1731-1740.
[18] Chung, C.K., & Lin, S.L., “CO2 laser micromachined crackless through holes of Pyrex 7740 glass.” International Journal of Machine Tools & Manufacture 50 (2010): 961-968.
[19] Li, Y., & Qu, S., “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips.” Current Applied Physics 13 (2013): 1292-1295.
[20] Ito, Y., Ueki, M., Kizaki, T., Sugita, N., & Mitsuishi, M., “Precision cutting of glass by laser-assisted machining.” Procedia Manufacturing 7 (2017): 240-245.
[21] Yoshioka, M., Hidai, H., & Tokura, H., “CW-laser induced modification in glasses by laser backside irradiation (LBI).” Proc. SPIE 6106, 61060Y1 (2006).
[22] Yoshioka, M., Gu, Z.H., Hidai, H., & Tokura, H., “Laser Induced Modification in Glasses by CW Laser Backside Irradiation.” Precision Engineering 72, 9 (2006): 1118-1122.
[23] Hidai, H., Saito, N., Matsusaka, S., Chiba, A., & Morita, N., “Deep drilling of silica glass by continuous-wave laser backside Irradiation.” Applied Physics A (2016) 122: 277.
[24] Hidai, H., Yoshioka, M., Hiromatsu, K., & Tokura, H., “Glass modification by continuous-wave laser backside irradiation (CW-LBI).” Applied Physics A 96 (2009): 869-872.
[25] Hidai, H., Yoshioka, M., Hiromatsu, K., & Tokura, H., “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation.” Journal of the American Ceramic Society 93, 6 (2010): 1597-1601.
[26] Itoh, S., Hidai, H., & Tokura, H., “Experimental and numerical study of mechanism of glass modification process by continuous-wave laser backside irradiation (CW-LBI).” Applied Physics A 112 (2013): 1043-1049.
[27] Saito, N., Hidai, H., Matsusaka, S., Chiba, A., & Morita, N., “Synthesis of silica glass fibers and nanoparticles by continuous-wave laser backside irradiation.” Applied Physics A 123 (2017): 643.
[28] Hidai, H., Saito, N., Matsusaka, S., Chiba, A., & Morita, N., “Deep drilling of silica glass by continuous-wave laser backside irradiation.” Applied Physics A 122 (2016): 277.
[29] Sato, S., Tokunaga, D., Hidai, H., Matsusaka, S., Chiba, A., & Morita, N., “Branched hole drilling in silica glass by continuous-wave laser backside irradiation.” Precision Engineering 60 (2019): 189-193.
[30] Nisar, S., Sheikh, M.A., Li, L., & Safdar, S., “Effect of thermal stresses on chip-free diode laser cutting of glass.” Optics & Laser Technology 41 (2009): 318-327.
[31] Coherent, Inc. Products Catalog.
[32] Matsunami Glass Ind., Ltd. Products Catalog Eighth Edition.
[33] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997): 39.
指導教授 何正榮 酒井克彥(Jeng-Rong Ho Katsuhiko Sakai) 審核日期 2020-12-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明