博碩士論文 105328601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.236.204.251
姓名 林雨潔(Jericha Cher Rodriguez Iglesia)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 調整陰極結構與特性並應用於高性能質子交換膜(PEM)燃料電池之研究
(Tailoring the Structure and Properties of Cathode to Achieve High-Power Density PEM Fuel Cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-5-31以後開放)
摘要(中) 現今,燃料電池科技做為替代能源已經受到相當大的關注。燃料電池像一般電池一樣可以將化學能轉換成電能。不同的燃料電池規格及系統設計被使用於不同的應用方面,在所有的燃料電池中,質子交換膜燃料電池 (PEMFC)能產出大量的能量,這可使 PEMFC應用在車輛上。本研究主要是在氬氣氣氛下,利用脈衝雷射法 (PLD)去沉積白金 (Pt)奈米顆粒於氣體擴散層 (GDL)上。主要分成兩種方法去調整 GDL,第一種方法是用滴定鑄造法將 Nafion滴在 GDL上,來改善質子傳導 ;而第二種方法是藉由雷射為加工將 GDL的觸媒表面積提升。

在第一種方法中,改變 Nafion離聚物的含量滴定鑄造在 GDL上的影響。當加入Nafion離聚物於觸媒漿料裡,可以改善質子傳導。首先 Pt觸媒會沉積在 GDL上,之後再將 Nafion溶液滴定鑄造在 GDL上,不同的 Nafion濃度藉由不同水及乙醇的濃度而被稀釋。結果顯示,基板及溶液的濕潤性在達到最大電流密度下扮演著極為重要的角色。在低 Pt擔載量為 100 μg cm−2時,最佳化 Nafion、水及酒精濃度分別為
0.05 wt%、33.5 wt%及 66.5 wt%。在另一方面,在高 Pt擔載量為 200 μg cm−2時,最佳化 Nafion濃度約為 0.025 wt%,更進一步檢測會被用來鑑定滴定鑄造法。

在第二種方法中,雷射微加工基板的結果顯示,藉由增加 Pt擔載量,能量密度不會下降。增加 Pt擔載量會提升膜厚,進而影響燃料電池性能。首先,使用皮秒雷射在GDL表面上製備凹槽來提升有效 Pt表面積沉積,並且降低 Pt膜厚,之後利用 PLD將 Pt沉積在觸媒上。藉由雷射微加工能製備出 20微米寬及 10微米深的凹槽,能量密度在 0.6 V下達到 853 mW cm−2,陰極 Pt擔載量為 200μg cm−2。假如能藉由改善雷
射微加工製程,可以進一步減少凹槽寬度及週期。
摘要(英) Recently, fuel cell technologies have received much attention as an alternative energy source. Fuel cells are like batteries that convert chemical energy into electricity. Different specifications and system design of the fuel cells are required for different applications. Among all the fuel cells, PEM fuel cell produces the most power for a given volume of the
fuel cell, which makes them suitable for vehicles. In this study, pulsed laser deposition (PLD) in Ar atmosphere was used to deposit Pt nanoparticles on the gas diffusion layers (GDLs). There were two methods of tailoring the GLDs have been explored in this study.
The first method is to improve the proton transport by drop casting Nafion on the GDL. The second topic is centered on increasing the surface area of the catalyst by laser micro-machining the GDL.

On the first method, the influence of Nafion® ionomer content drop casted on the GDL was investigated. The addition of Nafion® ionomer content in the catalyst ink enhances the proton conduction. In our study, Nafion® ionomer content is separately deposited on the GDL. The Pt was first deposited on the GDL and afterwards drop casted by Nafion® solution. Different Nafion® concentrations were diluted in different concentrations of water and ethanol. Results showed that the wettability of the substrate and the solution play a great role in achieving the highest current density. At lower Pt loading, 100 μg cm2, the optimized Nafion®, water, and ethanol concentration were 0.05 wt%, 33.5%, and 66.5%,
respectively. On the other hand, at higher Pt loading, 200 μg cm2, the optimized Nafion® concentration was 0.025 wt%. Further characterizations are needed to quantify the drop casting method.

The second method include laser micro-machining the substrate. Laser-micromachining the substrate demonstrate that by increasing the Pt loading the power density does not drop. Increasing the Pt loading increases the film thickness which affects the fuel cell performance. Firstly, the picosecond laser fabricates grooves on the surface of the gas diffusion layer to greatly increase the effective surface area of Pt deposition, thereby re-
ducing the Pt film thickness. And, secondly, pulsed laser deposition was used to deposit the Pt on to the catalyst. A 2-fold increase in the maximum power density is achieved by using laser micro-machined periodic grooves of 40 μm period, 20 μm groove width, and 10 μm depth, reach 853 mW/cm2 and a maxmimum power density of 1.2 mW/cm−2 with a cathode Pt loading of 200 μg/cm2 . Further promotion is expected if the groove width and the period could be reduced by improving the laser micro-machining process.
關鍵字(中) ★ 脈衝雷射沉積
★ 射激光微坏加工
★ 氣體擴散層
★ Nafion
關鍵字(英) ★ Pulsed laser deposition
★ laser micro-machining
★ gas diffusion layer
★ Nafion
論文目次 摘要 ix
Abstract xi
Acknowledgement xiii
Contents xv
List of Figures xvii
List of Tables xxi
1 Introduction 1
1.1 Fuel cell introduction ......................................................... 1
1.2 Proton-exchange membrane fuel cell (PEMFC) .............................. 3
1.3 Membrane Electrode Assembly ............................................... 4
1.3.1 Proton exchange membrane (PEM)................................... 4
1.3.2 Catalyst Layer ......................................................... 5
1.3.3 Gas Diffusion Layer (GDL)............................................ 5
1.3.4 Bipolar Plates.......................................................... 5
1.3.5 Catalyst Layer Preparation Methods ................................. 6
1.3.6 Factors influencing the MEA performance............................ 12
1.4 Literature review.............................................................. 14
1.5 Introduction to improving the proton transport in the deeper region through
drop-casting Nafion solution to establish proton conduction pathway in the
nanopores ........................................................................... 18
1.6 Introduction to raising the maximum power density of nanoporous catalyst
film-based PEMFC by laser micro-machining the GDL ........................... 19
1.7 Purpose of this study ......................................................... 20
2 Experimental Setup 21
2.1 Materials ...................................................................... 21
2.1.1 The substrate .......................................................... 21
2.1.2 The membrane......................................................... 22
2.2 Pulsed Laser Deposition (PLD) set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Laser and Optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Vacuum chamber and gas pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Laser micro-machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Material Characterization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Contact Angle Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Cyclic Voltammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Fuel cell performance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Experimental Methods of Improving the Proton Transport in the Deeper
Region Through Drop-casting Nafion Solution to Establish Proton Conduction
Pathway in the Nanopores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Experimental Methods of Raising the Maximum Power Density of Nanoporous
Catalyst Film-based PEMFC by Laser Micro-machining the GDL. . . . . . . . . . . . . . . . 32
3 Results and Discussion 35
3.1 Improving the Proton Transport in the Deeper Region through Dropcasting
Nafion solution to extablish Proton Conduction Pathway in the Nanopores
35
3.1.1 Solvent Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Cyclic Voltammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Fuel Cell Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Raising the maximum power density of nanoporous catalyst film-based
PEMFC by laser micro-machining the GDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Accelerated Degradation Test, ADT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Summary and Future Perspective 63
Bibliography 65
xvi
參考文獻 [1] V. S. Bagotsky Fuel Cells: Problems and Solutions. Hoboken New Jersey: John Wiley & Sons Inc 2nd ed. 2012

[2] S. G. Rodriguez T. Herranz and S. Rojas Electrocatalysts for electrooxidation of ethanol. Elsevier 2013

[3] C. Lamy C. Coutanceau and J. Leger The direct ethanol fuel cell: A challenge to convert bioethanol cleanly into electric energy. John Wiley & Sons 2009

[4] M. Kamarudin S. Kamarudin M. Masdar and W. Daud “Review: Direct ethanol fuel cells ” International Journal of Hydrogen Energy vol. 38 pp. 9438–9453 2013

[5] Z. W. Chia and J. Y. Lee Direct Ethanol Fuel Cells. John Wiley & Sons 2010

[6] Xiao-Zi and H. Wang PEM Fuel Cell Fundamentals. Springer 2008

[7] R. Crisafulli R. Antoniassi A. O. Neto and E. Spinacé “Acid-treated PtSn/C and PtSnCu/ C electrocatalysts for ethanol electro-oxidation ” International Journal of Hydrogen Energy vol. 39 pp. 5671–5677 2014

[8] T. Almeida L. Palma P. Leonello C. Morais K. Kokoh and A. D. Andrade “An optimization of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts ” Journal of Power Sources vol. 215 pp. 53–62 2012

[9] A. Kusoglu Ionomer Thin Films in PEM Fuel Cells. 04 2018.

[10] S. Holdcroft “Fuel cell catalyst layers: A polymer science perspective ” Chemistry of Ma-terials vol. 26 no. 1 pp. 381–393 2014

[11] B. Bladergroen H. Su S. Pasupathi and V. Linkov “Overview of membrane electrode assembly preparation methods for solid polymer electrolyte electrolyzer ” in Electrolysis (V. Linkov and J. Kleperis eds.) ch. 3 Rijeka: IntechOpen 2012

[12] Handbook of Think Film Technology. Springer-Verlag Berlin Heidelberg 2015

[13] G. Cao Nanostructures and Nanomaterials. Imperial College Press 2004

[14] F. Fouda-Onana N. Guillet and A. AlMayouf “Modified pulse electrodeposition of pt nanocatalyst as high-performance electrode for pemfc ” Journal of Power Sources vol. 271 pp. 401 – 405 2014


65

BIBLIOGRAPHY


[15] H. Kim N. P. Subramanian and B. N. Popov “Preparation of pem fuel cell electrodes using pulse electrodeposition ” Journal of Power Sources vol. 138 no. 1 pp. 14 – 24 2004

[16] F. Valle Electrocatalyst degradation in high temperature PEM fuel cells. PhD thesis 04 2015.

[17] H. Tsuchiya and O. Kobayashi “Mass production cost of pem fuel cell by learning curve ” International Journal of Hydrogen Energy vol. 29 no. 10 pp. 985 – 990 2004

[18] Z. Q. Tian S. H. Lim C. K. Poh Z. Tang Z. Xia Z. Luo P. K. Shen D. Chua Y. P. Feng Z. Shen and J. Lin “A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low pt loading pem fuel cells ” Advanced Energy Materials vol. 1 no. 6 pp. 1205–1214 2011

[19] X. X. Wang Z. H. Tan and J. N. Want “Carbon nanocages: A new support material for pt catalyst with remarkably high durability ” Scientific Reports vol. 4 p. 4437 2014

[20] S. Murata M. Imanishi S. Hasegawa and R. Namba “Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells ” Journal of Power Sources vol. 253 pp. 104 – 113 2014

[21] D. Sebastián J. Calderón J. González-Expósito E. Pastor M. Martínez-Huerta I. Suelves

R. Moliner and M. Lázaro “Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for pem fuel cells ” International Journal of Hydrogen Energy vol. 35 no. 18 pp. 9934 – 9942 2010 HE (Hydrogen Systems and Materials For Sustainability).

[22] P. Kauranen A. Pasanen E. Yli-Rantala E. Kauppinen V. Ruiz G. Lindbergh C. Lagergren

A. Oyarce Barnett S. Sunde M. Darab M. Thomassen E. Skou and S. Andersen “Graphitized carbon nanofibers as catalyst support for pemfc ” Fuel Cells vol. 0 01 2011.

[23] M. S. Wilson J. A. Valerio and S. Gottesfeld “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers ” Electrochimica Acta vol. 40 no. 3 pp. 355 – 363 1995 Polymer electrolyte fuel cells.

[24] S. Litster and G. McLean “Pem fuel cell electrodes. j power sources ” Journal of Power Sources vol. 130 pp. 61–76 05 2004.

[25] H. Qayyum C.-J. Tseng H. Ting-Wei and S.-y. Chen “Pulsed laser deposition of platinum nanoparticles as a catalyst for high-performance pem fuel cells ” Catalysts vol. 6 p. 180 11 2016.

[26] M. Wilson and S. Gottesfeld “High performance catalyzed membranes of ultra‐low pt load-ings for polymer electrolyte fuel cells ” Journal of the Electrochemical Society vol. 139 no. 2 pp. L28–L30 1992

[27] E. Taylor “Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells ” Journal of The Electrochemical Society - J ELEC-TROCHEM SOC vol. 139 01 1992.


66



[28] F. Fouda-onana N. Guillet and A. AlMayouf “Modified pulse electrodeposition of pt nanocatalyst as high-performance electrode for pemfc ” Journal of Power Sources vol. 271
p. 401–405 11 2014.

[29] H. Yu J. Roller W. Mustain and R. Maric “Influence of the ionomer/carbon ratio for low-pt loading catalyst layer prepared by reactive spray deposition technology ” Journal of Power Sources vol. 283 06 2015.

[30] S. Cogenli S. Mukerjee and A. Bayrakceken “Membrane electrode assembly with ultra low platinum loading for cathode electrode of pem fuel cell by using sputter deposition ” Fuel Cells vol. 15 02 2015.

[31] S. Cuynet A. Caillard T. Lecas J. Bigarré P. Buvat and P. Brault “Deposition of pt inside fuel cell electrodes using high power impulse magnetron sputtering ” Journal of Physics D: Applied Physics vol. 47 p. 272001 jun 2014.

[32] T. Shu D. Dang D.-w. Xu R. Chen S. Liao C.-T. Hsieh A. Su H.-y. Song and L. Du “High-performance mea prepared by direct deposition of platinum on the gas diffusion layer using an atomic layer deposition technique ” Electrochimica Acta vol. 177 03 2015.

[33] Y. Yuan J. A. Smith G. Goenaga J. Liu Z. Luo and A. Liu “Platinum decorated aligned carbon nanotubes: Electrocatalyst for improved performance of proton exchange membrane fuel cells ” Journal of Power Sources vol. 196 pp. 6160–6167 08 2011.

[34] W. Mróz B. Budner W. Tokarz P. Piela and M. L. Korwin-Pawlowski “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells ” Journal of Power Sources vol. 273 p. 885–893 01 2015.

[35] A. Khan B. K. Nath and J. Chutia “Nanopillar structured platinum with enhanced catalytic utilization for electrochemical reactions in PEMFC ” Electrochim Acta vol. 146 pp. 171–177 2014

[36] H. N. Su S. J. Liao T. Shu and H. L. Gao “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique ” J Power Sources vol. 195 pp. 756–761 2010

[37] B. Han C. E. Carlton A. Kongkanand R. S. Kukreja B. R. Theobald L. Gan R. O’Malley P. Strasser F. T. Wagner and Y. Shao-Horn “Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells ” Energy Environ. Sci. vol. 8
pp. 258–266 2015

[38] S. Chen P. J Ferreira W. Sheng N. Yabuuchi L. Allard and Y. Shao-Horn “Enhanced activity for oxygen reduction reaction on “pt 3 co”nanoparticles: Direct evidence of percolated and sandwich-segregation structures ” Journal of the American Chemical Society vol. 130

pp. 13818–9 10 2008.

[39] A. Udaykumar Nilekar Y. Xu Z. Junliang M. B. Vukmirovic K. Sasaki R. Adzic and M. Mavrikakis “Bimetallic and ternary alloys for improved oxygen reduction catalysis ” Topics in Catalysis vol. 46 pp. 276–284 12 2007.


67

BIBLIOGRAPHY


[40] V. Stamenkovic B. Simon Mun M. Arenz K. Mayrhofer C. Lucas G. Wang P. Ross and N. Marković “Trends in electrocatalysis on extended and nanoscale pt-bimetallic alloy sur-faces ” Nature materials vol. 6 pp. 241–7 04 2007.

[41] V. Stamenkovic B. Fowler B. Simon Mun G. Wang P. Ross C. Lucas and N. Marković “Improved oxygen reduction activity on pt3ni (111) via increased surface site availability ” Science (New York N.Y.) vol. 315 pp. 493–7 02 2007.

[42] K. J. J. Mayrhofer K. Hartl V. Juhart and M. Arenz “Degradation of carbon-supported pt bimetallic nanoparticles by surface segregation ” Journal of the American Chemical Society vol. 131 no. 45 pp. 16348–16349 2009 PMID: 19852496.

[43] S. Chen H. A. Gasteiger K. Hayakawa T. Tada and Y. Shao-Horna “Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells nanometer-scale compositional and morphological changes ” 2009.

[44] L. Du Y. Shao J. Sun G. Yin J. Liu and Y. Wang “Advanced catalyst supports for pem fuel cell cathodes ” Nano Energy 03 2016.

[45] W. Yang X. Wang F. Yang C. Yang and X. Yang “Carbon nanotubes decorated with pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction ” Advanced Materials vol. 20 no. 13 pp. 2579–2587 2008

[46] Y. Shao G. Yin J. Wang Y. Gao and P. Shi “Multi-walled carbon nanotubes based pt electrodes prepared with in situ ion exchange method for oxygen reduction ” Journal of Power Sources vol. 161 no. 1 pp. 47 – 53 2006

[47] Z. Yang M. R. Berber and N. Nakashima “Design of polymer-coated multi-walled carbon nanotube/carbon black-based fuel cell catalysts with high durability and performance under non-humidified condition ” Electrochimica Acta vol. 170 pp. 1 – 8 2015

[48] K. Parvez S. Yang Y. Hernandez A. Winter A. Turchanin X. Feng and K. Müllen “Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduc-tion reaction ” ACS Nano vol. 6 no. 11 pp. 9541–9550 2012 PMID: 23050839.

[49] S. Guo and S. Sun “Fept nanoparticles assembled on graphene as enhanced catalyst for oxy-gen reduction reaction ” Journal of the American Chemical Society vol. 134 no. 5 pp. 2492– 2495 2012 PMID: 22279956.

[50] R. Chen J. Yan Y. Liu and J. Li “Three-dimensional nitrogen-doped graphene/ mno nanoparticle hybrids as a high-performance catalyst for oxygen reduction reaction ” The Journal of Physical Chemistry C vol. 119 no. 15 pp. 8032–8037 2015

[51] Y. Li Y. Li E. Zhu T. McLouth C.-Y. Chiu X. Huang and Y. Huang “Stabilization of high-performance oxygen reduction reaction pt electrocatalyst supported on reduced graphene oxide/carbon black composite ” Journal of the American Chemical Society vol. 134 no. 30 pp. 12326–12329 2012 PMID: 22783832.


68



[52] S. Park Y. Shao H. Wan P. C. Rieke V. V. Viswanathan S. A. Towne L. V. Saraf J. Liu

Y. Lin and Y. Wang “Design of graphene sheets-supported pt catalyst layer in pem fuel cells ” Electrochemistry Communications vol. 13 no. 3 pp. 258 – 261 2011

[53] D. He K. Cheng T. Peng M. Pan and S. Mu “Graphene/carbon nanospheres sandwich supported pem fuel cell metal nanocatalysts with remarkably high activity and stability ”

J. Mater. Chem. A vol. 1 pp. 2126–2132 2013

[54] Y.-J. Wang D. P. Wilkinson and J. Zhang “Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts ” Chemical Reviews vol. 111 no. 12 pp. 7625– 7651 2011 PMID: 21919529.

[55] M. Breitwieser M. Klingele B. Britton S. Holdcroft R. Zengerle and S. Thiele “Improved pt-utilization efficiency of low pt-loading pem fuel cell electrodes using direct membrane deposition ” Electrochemistry Communications vol. 60 p. 168–171 09 2015.

[56] M. Klingele M. Breitwieser R. Zengerle and S. Thiele “Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells ” Journal of Materials Chemistry A vol. 3 04 2015.

[57] S. Vierrath M. Breitwieser M. Klingele B. Britton S. Holdcroft R. Zengerle and S. Thiele “Reasons for the high power density of fuel cells with directly deposited membranes ” Journal of Power Sources vol. 326 pp. 170–175 09 2016.

[58] j. k. Koh Y. Jeon Y. Il Cho J. Kim and Y.-G. Shul “A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications ” J. Mater. Chem. A vol. 2 05 2014.

[59] S. Cuynet A. Caillard S. Kaya-Boussougou T. Lecas N. Semmar J. Bigarré P. Buvat and

P. Brault “Membrane patterned by pulsed laser micromachining for proton exchange mem-brane fuel cell with sputtered ultra-low catalyst loadings ” Journal of Power Sources vol. 298 pp. 299 – 308 2015

[60] A. Kusoglu Ionomer Thin Films in PEM Fuel Cells pp. 1–23. New York NY: Springer New York 2018

[61] A. Brouzgou S. Q. Song and P. Tsiakaras “Low and non-platinum electrocatalysts for PEMFCs: Current status challenges and prospects ” Appl Catal B: Environmental vol. 127 pp. 371–388 2012

[62] N. Cunningham E. Irissou M. Lefev̀re M. C. Denis D. Guay and J. P. Dodelet “PEMFC anode with very low Pt loadings using pulsed laser deposition ” Electrochem Solid-State Lett vol. 6 pp. A125–A128 2003

[63] M. S. Saha A. F. Gullà R. J. Allen and S. Mukerjee “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition ” Electrochim Acta vol. 51 pp. 4680–4692 2006


69

BIBLIOGRAPHY


[64] M. Cavarroc A. Ennadjaoui M. Mougenot P. Brault R. Escalier Y. Tessier J. Durand S. Roualdès T. Sauvage and C. Coutanceau “Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings ” Electrochem Comm vol. 11 pp. 859–861 2009

[65] S. Cuynet A. Caillard T. Lecas J. Bigarrè P. Buvat and P. Brault “Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering ” J Phys D: Appl Phys vol. 47 p. 272001 2014

[66] M. A. Raso I. Carrillo E. Mora E. Navarro M. A. Garcia and T. J. Leo “Electrochemi-cal study of platinum deposited by electron beam evaporation for application as fuel cell electrodes ” Int J Hydrogen Energy vol. 39 pp. 5301–5308 2014

[67] M. S. Cogenli S. Mukerjee and A. B. Yurtcan “Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition ” Fuel Cells vol. 15 pp. 288–297 2015

[68] W. Mròz B. Budner W. Tokarz P. Piela and M. L. K. Pawlowski “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells ” J Power Sources vol. 273 pp. 885–893 2015

[69] T. W. Huang H. Qayyum G. R. Lin S. Y. Chen and C. J. Tseng “Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel cells with pulsed laser deposition ” J Phys D: Appl Phys vol. 49 p. 255601 2016

[70] H. Qayyum C.-J. Tseng T.-W. Huang and S.-y. Chen “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells ” CATALYSTS vol. 6 NOV 2016.

[71] N. Rizvi and P. Apte “Developments in laser micro-machining techniques ” JOURNAL OF MATERIALS PROCESSING TECHNOLOGY vol. 127 pp. 206–210 SEP 30 2002. International Conference on Precision Engineering SINGAPORE SINGAPORE MAR 21-23 2000.

[72] K. M. T. Ahmmed C. Grambow and A.-M. Kietzig “Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining ” MICROMACHINES vol. 5 pp. 1219– 1253 DEC 2014.

[73] S. Gao and H. Huang “Recent advances in micro- and nano-machining technologies ” FRON-TIERS OF MECHANICAL ENGINEERING vol. 12 pp. 18–32 MAR 2017.

[74] J. M. Doña Rodríguez J. A. Herrera Melián and J. Pérez Peña “Determination of the real surface area of pt electrodes by hydrogen adsorption using cyclic voltammetry ” Journal of Chemical Education vol. 77 no. 9 p. 1195 2000

[75] B. T. Tsai C. J. Tseng Z. S. Liu C. H. Wang C. I. Lee C. C. Yang and S. K. Lo “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor ” Int J Hydrogen Energy vol. 37 pp. I3060–I3066 2012


70



[76] C. J. Tseng B. T. Tsai Z. S. Liu T. C. Cheng W. C. Chang and S. K. Lo “A PEM fuel cell with metal foam as flow distributor ” Energ Convers Manage vol. 62 pp. 14–21 2012

[77] M. Ciureanu and R. Roberge “Electrochemical impedance study of pem fuel cells. exper-imental diagnostics and modeling of air cathodes ” The Journal of Physical Chemistry B vol. 105 no. 17 pp. 3531–3539 2001

[78] C. Spiegel “Techniques for measuring fuel cell resistance ” 2017.

[79] ”D. B”̈auerle”Laser Processing and Chemistry. Springer 2011

[80] R. Eason Pulsed laser deposition of thin films: applications-led growth of functional mate-rials first edition. John Wiley and Sons Inc. 2006

[81] J. M. D. Rodrìguez J. A. H. Meliàn and J. P. Peña “Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry ” J Chem Educ vol. 77
pp. 1195–1197 2000

[82] J. Shetzline and S. Creager “Quantifying electronic and ionic contributions in carbon/ polyelectrolyte composite thin films ” Journal of the Electrochemical Society vol. 161 no. 14
pp. H917–H923 2014
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2019-5-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明