博碩士論文 105329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.133.144.217
姓名 張峻維(Chun-Wei Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
(Effect of Minor Zr, Sc and Homogenization on Mechanical Properties and Recrystallization of Al-4.5Zn-1.5Mg Alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由光學顯微鏡(OM)、差示掃描量熱儀(DSC)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM + EBSD)等來分析微量Zr/Sc與均質化對Al-4.5Zn-1.5Mg(AA7005)合金微結構之影響,並以硬度及拉伸試驗,探討其T6態AA7005鋁合金機械性質;結果顯示,含0.05Sc(wt%)之Al-4.5Zn-1.5Mg合金之鑄態、均質化與T6態已再結晶微結構,其晶粒細化效果均較含0.1Zr(wt%)合金顯著;且經均質化處理後,含Sc之合金於鋁基地所析出之Al3Sc顆粒,雖較含Zr之合金所析出之Al3Zr顆粒較粗化,但卻更能有效抑制合金T6態的再結晶與晶粒成長;在T6態下,較低量Sc(0.05%Sc)的添加其對機械性質的提升優於較大量Zr(0.1Zr)的添加;另外,相較於一段式均質化熱處理,兩段式均質化可使散佈顆粒相(Al3Zr/Al3Sc)更為細小;導致經兩段式均質化之合金的T6態機械強度均優於所對應合金的一段式均質化者;而不同均質化對含Zr之Al-4.5Zn-1.5Mg合金之Al3Zr散佈顆粒相之粗細差異大於含Sc合金,故其機械強度提升效率略優於含Sc合金。
摘要(英) The effects of minor Zr/Sc and homogenization on the microstructural evolution and mechanical properties in T6 state of Al-4.5Zn-1.5Mg alloy were investigated by optical microscopy (OM), differential scanning calorimetry (DSC) measurements, transmission electron microscopy (TEM), scanning electron microscopy- electron back-scattered diffraction (SEM-EBSD), hardness test and tensile test. The results demonstrated that the addition of 0.05Sc(wt%) had a better effect on grain refining than 0.1Zr(wt%) in a state of as-cast, as- homogenization and recrystallized section of T6 state in Al-4.5Zn-1.5Mg alloy. Also, the alloy with less addition (0.05wt%)Sc had a better effect on inhibiting recrystallization and grain growth than the alloy with more addition (0.1wt%)Zr. As a result, grain refinement and improvement of mechanical properties were observed after T6 temper although the precipitates of the alloy with minor Sc, which precipitated Al3Sc dispersoids, were coarser than the alloy with minor Zr, which precipitated Al3Zr dispersoids. Otherwise, two-stage homogenization treatment would get a smaller and denser Al3Zr/ Al3Sc dispersoids, which had more positive effect on grain refinement and improvement of mechanical properties than one-stage homogenization. However, for the alloy with minor Zr, different homogenization treatments made a greater divergences on the size and distribution of the dispersoids than the alloy with minor Sc. Therefore, the mechanical properties caused by different homogenization of the alloy with minor Zr had more improved than the alloy with minor Sc
關鍵字(中) ★ Al-Zn-Mg合金
★ AA7005
★ 鋯
★ 鈧
★ 均質化
★ 再結晶微結構
★ 機械性質
關鍵字(英) ★ Al-Zn-Mg
★ AA7005
★ Zirconium
★ Scandium
★ Homogenization
★ Microstructure
★ Recrystallization
★ Mechanical properties
論文目次 總目錄
摘要 I
Abstract II
謝誌 III
總目錄 IV
圖目錄 VII
表目錄 XII
一、 前言與文獻回顧 1
1.1 7000系鋁合金簡介 1
1.2 7000系鋁合金之熱處理 4
1.3 析出硬化機制原理 7
1.4 鋁合金之擠製性 9
1.5 合金元素添加對於7000系鋁合金之影響 13
1.5.1 鋯與鈧對7000系鋁合金再結晶之影響 15
1.5.2 鋯與鈧對7000系鋁合金機械性質之影響 19
1.6 均質化熱處理製程對鋁合金微結構之影響 20
1.7 研究動機 23
二、 實驗方法與步驟 24
2.1 合金配置與鑄造 24
2.2 熱處理製程與加工參數 27
2.3 微結構觀察 27
2.3.1 光學顯微鏡(Optical microscopy, OM) 27
2.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 28
2.3.3 掃描式電子顯微鏡(Electron Back-Scattered Diffraction, EBSD) 28
2.3.4 差示掃描量熱儀(Differential Scanning Calorimetry, DSC) 29
2.4 機械性質分析 29
2.4.1 硬度試驗(Hardness, HV) 29
2.4.2 拉伸試驗(MTS) 29
三、 結果與討論 30
3.1 微結構 30
3.1.1 光學顯微鏡分析(Optical microscopy, OM) 30
3.1.2 穿透式電子顯微鏡分析(Transmission Electron Microscopy, TEM) 46
3.1.3 掃描式電子顯微鏡(Electron Back-Scattered Diffraction, EBSD) 52
3.1.4 差示掃描量熱儀分析(Differential Scanning Calorimetry, DSC) 55
3.2 機械性質測試 57
3.2.1 硬度及拉伸試驗 57
3.2.2 破斷面形貌之SEM觀察 59
四、 結論 61
五、 參考文獻 62
參考文獻 [ASM1] J. R. Davis, ASM Specialty Handbook : Aluminum and Aluminum Alloys, ASM International, p.3-p.5 (1993)
[ASM2] J. R. Davis, ASM Specialty Handbook : Heat Treating of Aluminum Alloys, ASM International, p.841-p.879 (1993)
[ASM3] J. R. Davis, ASM Specialty Handbook : Aluminum and Aluminum Alloys, ASM International, p.59-p.62 (1993)
[ASM4] J. R. Davis, ASM Specialty Handbook : Aluminum and Aluminum Alloys, ASM International, p.70 (1993)
[ASM5] S. L. Semiatin, ASM Handbook : Bulk Forming, ASM International, p.522-p.527 (2005)
[ASTM1] ASTM B221M-13, Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric), (2013)
[ASTM2] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016)
[CHA] H. M. Chan, F. J. Humphreys, “Effect of particle stimulated nucleation on orientation of recrystallized grains”, Metal Science, Vol. 18, pp.527-529 (1984)
[DAV1] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum alloys”, ASM International Materials Park, Ohio, pp.41-46 (2007)
[DAV2] V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov, V. I. Yelagin, “Scienti?c principles of making an alloying addition of scandium to aluminium alloys”, Materials Science and Engineering A280, pp.30–36 (2000)
[DEN] Y. L. Deng, Y. Y. Zhang, L. Wan, A. A. Zhu, X. M. Zhang, “Three-stage homogenization of Al–Zn–Mg–Cu alloys containing trace Zr”, Metallurgical And Materials Transactions A 44, pp.2470–2477 (2013)
[GUO] Z. Guo,G. Zhao,X. G. Chen, “Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy”, Materials Characterization, Vol. 102, pp.122-130 (2015)
[HIR] S. Hirosawa, T. Sato, A. Kamio, “Effects of Mg addition on the kinetics of low temperature precipitation in Al-LiCu-Ag-Zr alloys”, Materials Science and Engineering A, Vol. 242, pp.195-201 (1998)
[HUA] X. Huang, Q. Pan, B. Li , Z. Liu, Z. Huang, Z. Yin, “Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc”, Journal of Alloys and Compounds 650, pp.805-820 (2015)
[HUM1] F. J. Humphrey, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 2nd Edition, p.48-p.50 (2004)
[HUM2] F. J. Humphreys, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 3rd ed. Elsevier Science Inc., Oxford, (2017)
[HUM3] F. J. Humphrey, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 2nd Edition, p.50-p.65 (2004)
[HUM4] F.J. Humphreys, M. Hatherly, “Recrystallization and related annealing phenomena- Grain growth following recrystallization”, ELSEVIER Ltd, Chapter 11, p.368-378 (2004)
[HUM5] F. J. Humphrey, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 2nd Edition, p.293-p.319 (2004)
[JIA1] M. Jia, Z. Zheng, Z. Gong, “Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization”, Journal of Alloys and Compounds, Vol. 64, pp.131–139 (2014)
[JIA2] K. D. Jiang, L. Chen, Y. Y. Zhang, Y. L. Deng, “Influence of sub-grain boundaries on quenching process of an Al-Zn-Mg-Cu alloy”, Transactions of Nonferrous Metals Society of China, Vol. 24, pp.2117-2121 (2014)
[KAU] J. G. Kaufman, “Introduction to Aluminum Alloys and Tempers”, Chapter. 4, No. 11, pp.39–76 (2000)
[KNI1] K. E. Knipling, D. N. Seidma, D. C. Dunand, “Ambient- and high- temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys”, Acta Materialia, Vol. 59, pp.943-954 (2011)
[KNI2] K. E. Knipling, D. C. Dunand, D. N. Seidman, “Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425℃”, Acta Materialia 56, pp.114–127 (2008)
[KNI3] K. E. Knipling, “Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates”, pp.82 (2006)
[LEF] W. Lefebvre, N. Masquelier, J. Houard, R. Patte, H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions, Scripta Materialia, Vol. 70, pp.43-46 (2014)
[LI1] C. B. Li, S. Q. Han, S. D. Liu, Y. L. Deng, X. M. Zhang, “Grain structure effect on quench sensitivity of Al?Zn?Mg?Cu?Cr alloy”, Transactions of Nonferrous Metals Society of China, Vol. 26, pp.2276-2282 (2016)
[LI2] Y. J. Li, A. M. F. Muggerud, A. Olsen, T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy”, Acta Materialia, Vol. 60, pp.1004-1014 (2012)
[LI3] Z. Li, H. Jiang, Y. Wang, D. Zhang, D. Yan, L. Rong, “Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy”, Journal of Materials Science & Technology, Vol. 34, pp.1172-1179 (2018)
[LIM] S. T. Lim, S. J. Yun, S. W. Nam, “Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications”, Materials Science and Engineering A, Vol. 371, pp.82-90 (2004)
[LIU] J. Liu, P. Yao, N. Q. Zhao, C. S. Shi, H.J Li, X. Li , D. S. Xi, S. Yang, “Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, Vol. 657, pp.717-725 (2016)
[LOR] G. W. Lorimer, R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, Vol. 14, pp.1009-1013 (1966)
[LU] X. Y. Lu, E. J. Guo, P. Rometsch, L. J. Wang, “Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy”, Transactions of Nonferrous Metals Society of China,Vol. 22, pp.2645-2651 (2012)
[MAZ] F. M. Mazzolani, “Aluminium Structural Design”, Springer-Verlag Wien, p.16-p.18 (2003)
[MOH] A. M. A. Mohamed, F. H. Samuel, “Heat Treatment-Conventional and Novel Applications”, 1st Edition, p.229-p.246 (2012)
[MOO] K. I. Moon, S. C. Kim, K. S. Lee, “A study on the microstructure of D023 Al3Zr and L12 (Al+12.5at.%Cu)3Zr intermetallic compounds synthesized by PBM and SPS, Intermetallics, Vol. 10, pp.185-194 (2002)
[MUK2] A. K. Mukhopadhyay, G. J. Shiflet and E. A. Starke, Jr., “Role of vacancies on the precipitation process in Zr modified aluminum based alloys”, Acta Metallurgica et Materialia, Vol. 24, pp.307-312 (1990)
[MUR] J. L. Murray, “The Al-Sc (Aluminum-Scandium) System”, Journal of Phase Equilibria, Vol. 19, pp.380-384 (1998)
[OU] B. L. Ou, J. G. Yang, M. Y. Wei, “Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys”, Metallurgical And Materials Transactions A 38, pp.1760–1773 (2007)
[PEN] G. S. Peng, K. H. Chen, S. Y. Chen, H. C. Fang, “Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-Mg-Cu alloy”, Materials Science and Engineering A, Vol. 528, pp.4014- 4018 (2011)
[REE] R. E. Reed-Hill, R. Abbaschian : Physical Metallurgy Principles, 4th Edition, p.515-p.516 (2009)
[ROB] J. D. Robson, “Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model”, Materials Science and Engineering A338, pp.219-229 (2002)
[RoY] J. Royset, “Scandium in aluminium alloys overview: physical metallurgy, properties and applications”, Metallurgical Science and Technology, Vol. 26, pp.11-21 (2008)
[SPE] M. O. Speidel, M.V. Hyatt, “Advances in corrosion science and technology”, Plenum Press, NY, Vol. l, Issue 2, pp.115-127 (1972)
[STA1] E. A. Starke, J. T. Staley, “Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences”, Vol. 32, pp.131–172 (1996)
[STA2] X. M. Li, M. J. Starink, “The Effect of Compositional Variations on the Characteristics of Coarse Intermetallic Particles in Overaged 7xxx Al Alloys”, Materials Science and Technology, Vol. 17, pp.1324-1328 (2001)
[SUN] Y. Sun, G. Q. Wang, “Monte Carlo simulation of the microstructure evolution of Al-Zn-Mg-(Sc)-(Zr) alloys during the initial aging stage”, Journal of Shandong University Engineering Science, Vol.40, pp.99-103 (2010)
[TAN] J. G. Tang, H. Chen, X. M. Zhang, S. D. Liu, W. J. Liu, OUYANG Hui, H. P. Li, “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”, Transactions of Nonferrous Metals Society of China, Vol. 22, pp.1255-1263 (2012)
[TEM] E. Tempelman, H. Shercliff, B. N. V. Eyben, Manufacturing and Design, Chapter 5, p.74-p.76 (2014)
[UNW] P. N. T. Unwin, R. B. Nicholson, “The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys”, Acta Metallurgica, Vol. 17, pp.1379-1393 (1969)
[XIA] T. Xiao, Y. Deng, L. Ye, H. Lin, C Shan, P. Qian, “Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloys”, Materials Science & Engineering A 675, pp.280–288 (2016)
[YAS] Yasushi SAKAI, “Current state and the future of aluminum-alloy application for rolling stock”, Journal of Japan Institute of Light Metals, Vol. 55, No. 11, pp.584-587 (2006)
[ZHA] M. Zhang, T. Liu, C. He, Ji. Ding, E. Liu, C. Shi, J. Li, N. Zhao, “Evolution of microstructure and properties of Al-Zn-Mg-Cu-Sc-Zr alloy during aging treatment”, Journal of Alloys and Compounds , Vol. 658, pp.946-951 (2016)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明