博碩士論文 105329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.237.94.109
姓名 陳云甄(Yun-Jhen Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鉬氧化物/銀多層薄膜應用於雲母基微型固態超級電容器
(All-Solid-State Micro-Supercapacitors Based on Mica Substrates with MoOx/Ag Multilayers electrodes)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-1以後開放)
摘要(中) 隨著時代演變,科技快速進步,全球對環境與能源日益重視,在可再生能源及其裝置的發展上更加迫切。超級電容器擁有優異的功率密度與儲電能力,能提供高速充放電速率且循環壽命長,其中微型超級電容器由於可以和MEMS和CMOS集成,進一步研發為透明可撓性超電容更能在穿戴型裝置等作有效運用,引起了廣泛的研究興趣。
本研究以濺鍍MoOx/Ag多層薄膜為活性物質製備指叉式微型固態超級電容器,為了嘗試透明可撓性,也有製作可撓性基板的試片,基板選用耐高溫、抗酸鹼的天然雲母片;石墨稀當集電極以維持其透光度和導電性。指叉結構組態(指叉總數、間隙、寬度及長度)、活性物質MoOx/Ag多層薄膜的厚度參數的選定由矽基板的試片電化學性質、循環穩定性和體積比電容等多面向考慮,由電化學交流阻抗分析證實了由於銀薄膜的摻入,MoOx金屬氧化物之低導電率的缺陷得到有效的改善,使得其體積比電容與能量和功率密度遠高於基於MoOx單層薄膜結構的指叉式微型固態超級電容器,且其體積比電容隨著銀摻入的量增而逐漸增加。活性材料的高導電性對於金屬氧化物的擬電容是否能實現高的比電容以及功率和能量密度至關重要,為了探討元件經過充放電循環後,活性材料性質的改變,本研究對兩種基板上的多層MoOx/Ag薄膜進行各種電性及材料分析。
摘要(英) With the scientific and technological advancements, the society which we live is facing the energy and environmental related problems such as pollution, deficiency of fossil fuels, and global warming. In order to resolve these issues, green-energy and renewable materials as well as their devices are demanded. Supercapacitors (SCs) exhibit high specific capacitance and power density, fast charge-discharge rate, and long cycle life. In addition, they are safe in operation and environmental friendly. Recently, micro-supercapacitors (MSCs) have attracted much interests since they can be further integrated into MEMS and CMOS.
In this study, we prepared all solid-state micro-supercapacitor by sputtering MoOx/Ag multilayers film as active material. We also tried natural mica flakes for substrate,which are transparent and flexible. It can also resistant to high temperature, acid and alkali. The configuration of the interdigitated structure and the thickness of the active material MoOx/Ag film are considered by their electrochemical properties, cycle stability and volumetric capacitance. It is confirmed by impedance analysis that the low conductivity defect of MoOx was effectively improved due to the incorporation of silver film. It makes its volumetric capacitance, energy and power density much higher than MoOx single-layer film.
The conductivity of the active material is essential for the high specific capacitance, power and energy density of pseudocapacitor. In order to investigate the changes in the properties of active materials after the charge and discharge cycles, various electrical and material analyses were performed on the multilayered MoOx/Ag films of the two substrates.
關鍵字(中) ★ 超級電容器
★ 擬電容
★ 金屬氧化物
★ 材料分析
★ 電化學
★ 儲能元件
關鍵字(英) ★ Supercapacitor
★ Pseudocapacitor
★ Metal oxide
★ Material analysis
★ Electrochemistry
★ Energy storage device
論文目次 摘要……………………………………………………………………………I
Abstract……..……………………………………………………II
目錄…………………………………………………………………………IV
圖目錄……………………………………………………………………VIII
表目錄………………………………………………………………………X
第一章 緒論…………………………………………………………1
1.1 前言…………………………………………………………………1
1.2 基本原理與文獻回顧………………………………3
1.2.1 超級電容器簡介……………………………………3
1.2.2 超級電容器之儲能機制………………………4
1.2.2.1 電雙層電容器……………………………………4
1.2.2.2 擬電容器………………………………………………6
1.2.2.3 混合電容器 ………………………8
1.2.3 超級電容器之電極材料………………………9
1.2.3.1 碳系材料………………………………………………9
1.2.3.2 過渡金屬氧化物/氫氧化物…………9
1.2.3.3 導電高分子…………………………………………10
1.2.4 超級電容器之電解質……………………………11
1.2.5 微型透明可撓式超級電容器………………12
1.2.6 超級電容器之電化學原理與技術…………14
1.2.6.1 循環伏安法 ……………………………14
1.2.6.2 恆電流充放電法………………………………………15
1.2.6.3 電化學交流阻抗………………………………………16
1.3 研究動機與目的…………………………………………………18
第二章 實驗內容與方法…………………………………………19
2.1 實驗藥品及材料……………………………………………………19
2.2 製程與分析儀器……………………………………………………20
2.2.1 雷射光罩製作系統(Laser Direct Write Image System)………….................................20
2.2.2 旋轉塗布機(Spin Coater)………………………20
2.2.3 光罩對準曝光機(Mask Aligner)……………20
2.2.4 高真空電子束暨熱阻式蒸鍍系統(E-gun & Thermal Evaporation System)…………………………………………………21
2.2.5 射頻與直流磁控濺鍍機(RF&DC Magnetron Sputtering)…………...................................21
2.2.6 紫外光臭氧清洗機(UV-Ozone Stripper)………22
2.2.7 恆電位儀(Potentiostat)…………………………………………22
2.2.8 四點探針電阻量測儀(Four-point probe)………23
2.2.9 X射線光電子能譜(X-Ray Photoelectron spectroscopy, XPS)……….........................................23
2.2.10 高效能可變溫多功能X光繞射儀(D8 Discover X ray Diffraction System)………………………………………………………………24
2.2.11 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)…….........................................24
2.2.12 掃描穿透式電子顯微鏡(Scanning Transmission Electron
Microscopy, STEM)………………………………………………….......25
2.2.13 雙束型聚焦離子束顯微鏡(Dual Beam Focus Ion Beam, DB-FIB) ………………………………………………………………………………........25
2.3 實驗流程…………………………………………………………………......26
2.4 實驗製程………………………………………………………………….......27
2.4.1 指叉圖形結構與組態之設計……………………………………..27
2.4.2 對照組試片製備…………………………………………………......28
2.4.3 黃光微影 …………………………………………………………......28
2.4.4 製備集電極………………………………………………………........28
2.4.5 製備活性物質……………………………………………………........29
2.4.6 掀離製程 ………………………………………………………….......30
2.4.7 製備固態電解質…………………………………………………........30
2.4.8 製備指叉式微型固態超級電容器………………………………...30
2.4.9 製備雲母基微型固態超級電容器…………………………………..31
第三章 實驗結果與討論……………………………………………………......32
3.1 材料分析…………………………………………………………………..........32
3.1.1穿透式電子顯微鏡分析(TEM)………………………………………...32
3.1.2 X射線光電子能譜分析(XPS)………………………………………...35
3.1.3低掠角X光繞射分析(GIXRD)……………………………………….....42
3.1.4片電阻量測(Sheet resistance)…………………………………………42
3.3.5穿透率量測(Transmittance)…………………………………………...43
第四章 結論…………………………………………………………………...........44
第五章 參考文獻……………………………………………………………..........45
參考文獻 1. D. P. Dubal, P. Gomez-Romero, B. R. Sankapal and R. Holze, “Nickel Cobaltite as an Emerging Material for Supercapacitors: An Overview,” Nano Energy 11, 377-399(2015).
2. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7, 845-854(2008).
3. A. Gonzalez, E. Goikolea, J. A. Barrena and R. Mysyk, “Review on supercapacitors: technologies and materials, ” Renew Sustain Energy Rev. 58, 1189-1206(2016).
4. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, “Electrochemical Energy Storage for Green Grid,” Chem. Rev. 111, 3577-3613(2011).
5. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang and Y.-W. Yang, “Mesoporous Transition Metal Oxides for Supercapacitors,” Nanomaterials 5, 1667-1689(2015).
6. A. K. Shukla, S. Sampath and K. Vijayamohanan, “Electrochemical supercapacitors: Energy storage beyond batteries,” Curr. Sci. 79, 1656-1661(2000).
7. C. D. Lokhande, D. P. Dubal and O. S. Joo, ” Metal oxide thin film based supercapacitors,” Curr. Appl. Phys. 11, 255-270(2011).
8. A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources 157, 11-27(2006).
9. M. Vangari, T. Pryor and L. Jiang, “Supercapacitors: Review of Materials and Fabrication Methods,” J. Energy Eng. 139, 72-79(2013).
10. R. Kotz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 2483-2498(2000).
11. G. Wang, L. Zhang and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chem. Soc. Rev. 41, 797-828(2012).
12. L. L. Zhang and X. S. Zhao, “Carbon-based Materials as Supercapacitor Electrodes,” Chem. Soc. Rev. 38, 2520-2531(2009).
13. M. S. Kolathodi, M. Palei and T. S. Natarajan, “Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors,” J. Mater. Chem. A 3, 7513-7522(2015).
14. J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured Electrodes for High-performance Pseudocapacitors,” Angew. Chem. Int. Ed. 52, 1882-1889(2013).
15. V. Augustyn, P. Simon and B. Dunn, “Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage,” Energy Environ. Sci. 7, 1597-1614(2014).
16. H. Zhao, W. Han, W. Lan, J. Zhou, Z. Zhang, W. Fu and E. Xie, “Bubble Carbon-nanofibers Decorated with MnO2 Nanosheets as High-Performance Supercapacitor Electrode,” Electrochim. Acta 222, 1931-1939(2016).
17. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, “Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials,” J. Am. Chem. Soc. 132, 7472-7477(2010).
18. S. C. Lee, U. M. Patil, S. J. Kim, S. Ahn, S.-W. Kang and S. C. Jun, “All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes,” RSC Adv. 6, 43844-43854(2016).
19. C. W. Shen, X. H. Wang, S. W. Li, J. G. Wang, W. F. Zhang and F. Y. Kang, “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources 234, 302-309(2013).
20. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy 34, 4889-4899(2009).
21. S.-M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, “Recent Advancements in Electrode Materials for the High-performance Electrochemical Supercapacitors: A Review,” Int. J. Electrochem. Sci. 9, 4072-4085(2014).
22. T. Zhai, X. Lu, F. Wang, H. Xia and Y. Tong, “MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification,” Nanoscale Horiz. 1, 109-124(2016).
23. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, “Carbon Electrodes for Double?Layer Capacitors I. Relations Between Ion and Pore Dimensions,” J. Electrochem. Soc. 147, 2486-2493(2000).
24. O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance limits of high surface area activated carbons for double layer capacitors,” Carbon 43, 1303-1310(2005).
25. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors,” J. Power Sources 74, 99-107(1998).
26. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara and M. S. Dresselhaus, “Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes,” J. Electrochem. Soc. 148, A910-A914(2001).
27. J. N. Barisci, G. G. Wallace and R. H. Baughman, “Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes,” J. Electrochem. Soc. 147, 4580-4583(2000).
28. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova and A. Oya, “Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoTM BuckytubesTM) in propylene carbonate electrolytes,” Electrochem. Commun. 4, 593-598(2002).
29. C. Kim, “Electrochemical characterization of electrospun active carbon nanofiber as an electrode in supercapacitor,” J. Power Sources 142, 382-388(2005).
30. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, “A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors,” Adv Mater 22, 3723-3728(2010).
31. Y. Song, J.-L. Xu and X.-X. Liu, “Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode,” J Power Sources 249, 48-58(2014).
32. C. C. Hu, K. H. Chang, M.C. Lin and Y. T. Wu, “Design and Tailoring of the Nanotublar Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Lett. 6, 2690-2695(2006).
33. S. Devaraj and N. Munichandraiah, “Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties,” J. Phys. Chem. C 112, 4406-4417(2008).
34. J. G. Wang, Y. Yang, Z. H. Huang and F. Kang, “Effect of Fe3+ on the Synthesis and Electrochemical Performance of Nanostructured MnO2,” Mater. Chem. Phys. 133, 437-444(2012).
35. L. Lu, H. Xia, J. Feng, H. Wang and M. O. Lai, “MnO2 Nanotube and Nanowire Arrays by Electrochemical Deposition for Supercapacitors,” J. Power Sources 195, 4410-4413 (2010).
36. A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib and C. M. Julien, “Polypyrrole-covered MnO2 as Electrode Material for Supercapacitor,” J. Power Sources 240, 267-272(2013).
37. J. Wang, B. Ren, M. Fan, Q. Liu, D. Song and X. Bai, “Hollow NiO Nanofibers Modified by Citric Acid and the Performance as Supercapacitor Electrode,” Electrochim. Acta 92, 197-204(2013).
38. X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang and L. Liang, “Synthesis of Mesoporous NiO Nanoflake Array and its Enhanced Electrochemical Performance for Supercapacitor Applications,” J. Alloys and Compounds 593, 184-189(2014).
39. C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, F. Zhang, D. K. Li, X. G. Zhang, “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors,” J. Mater. Chem. 21, 18183-18185(2011).
40. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S. H. Chang, ” Symmetric redox supercapacitor with conducting polyaniline electrodes,” J. Power Sources 103, 305-309(2002).
41. A. Clemente, S. Panero, E. Spila and B. Scrosati, “Solid-state, polymer-based, redox capacitors,” Solid State Ionics 85, 273-277(1996).
42. A. Laforgue, P. Simon, C. Sarrazin and J.-F. Fauvarque, “Polythiophene-based supercapacitors,” J. Power Sources 80, 142(1999).
43. F. Selampinar, U. Akbulut and L. Toppare, “Conducting polymer composites of polypyrrole and polyimide,” Synth. Met. 84, 185-186(1997).
44. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chem. Soc. Rev. 44, 7484-7539(2015).
45. H. Gao and K. Lian, “Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review,” RSC Adv. 4, 33091-33113(2014).
46. 胡啟章, “電化學原理與方法(二版),” 五南圖書出版, (2002).
47. Francois Beguin(著), Elzbieta Frackowiak(著), 張治安(譯), “超級電容器:材料、系統及應用,” 機械工業出版, (2014).
48. D. S. Yu, K. Goh, H. Wang, L. Wei, W. C. Jiang, Q. Zhang, L. M. Dai and Y. Chen, “Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage,” Nat. Nanotech. 9, 555-562(2014).
49. W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman and M. Anouti, “Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors,” J. Phys. Chem. C 118, 4033-4042(2014).
50. X.-M. Liu, R. Zhang, L. Zhan, D.-H. Long, W.-M. Qiao, J.-H. Yang and L.-C. Ling, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte,” New Carbon Mater 22, 153-1588(2007).
51. D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet and D. Guay, “Influence of the configuration in planar interdigitated electrochemical micro-capacitors,” J. Power Sources 230 , 230-235(2013).
52. B. Huang, X.-Z. Sun, X. Zhang, D.-C. Zhang and Y.-W. Ma, “活性炭基軟包裝超級電容器用有機電解液,” Acta Phys.-Chim. Sin. 29, 1998-2004(2013).
53. M. Beidaghi and Y. Gogots, “Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of microsupercapacitors,” Energy Environ. Sci. 7, 867-884(2014).
54. C. W. Shen, X. H. Wang, W. F. Zhang and F. Y. Kang, “A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials,” J. Power Sources 196, 10465-10471 (2011).
55. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P. Simon, “Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon,” Nature Nanotech. 5, 651-654 (2010).
56. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang and Z. Hu, “On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode,” Electrochim. Acta 163, 107-115(2015).
57. M. Beidaghi and C. Wang, “Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance,” Adv. Funct. Mater. 22, 4501-4510(2012).
58. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O.G. Schmidt, “On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers,” Energy Environ. Sci. 6, 3218-3223(2013).
59. K. Wang, W. J. Zou, B. Quan, A. F. Yu, H. P. Wu, P. Jiang and Z. X. Wei, “An All-Solid-State Flexible Micro-supercapacitor on a Chip,” Adv. Energy Mater. 1, 1068-1072(2011).
60. E. Eustache, C. Douard, R. Retoux, C. Lethien and T. Brousse, “MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes,” Adv. Energy Mater., 1500680(2015).
61. Y. D. Zhang, B. P. Lin, Y. Sun, P. Han, J. C. Wang, X. J. Ding, X. Q. Zhang and H. Yang, “MoO2@Cu@C Composites Prepared by Using Polyoxometalates@Metal-Organic Frameworks as Template for All-Solid-State Flexible Supercapacitor,” Electrochim. Acta, 188, 490-498(2016).
62. X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, L. Gong, J. Chen, Y. H. Gao, J. Zhou, Y. X. Tong and Z. L. Wang, “WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors,” Adv. Mater. 24, 938-944(2012).
63. J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao and F. Gao, “Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres,” Nat. Commun. 6, 8503(2015).
64. T. Qiu, B. Luo, M. Giersig, E. M. Akinoglu, L. Hao, X. Wang, L. Shi, M. Jin and L. Zhi, “Au@MnO2 Core-Shell Nanomesh Electrodes for Transparent Flexible Supercapacitors,” Small 10, 4136-4141(2014).
65. C. Y. Yang, J. L. Shen, C. Y. Wang, H. J. Fei, H. Bao and G. C. Wang, “All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes,” J. Mater. Chem. A 2, 1458-1464(2014).
66. Elcap, “EDLC-Capacitance-measuring,” August 2012, 取自https://howlingpixel.com/i-en/Supercapacitor
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明