博碩士論文 105329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.220.164.172
姓名 劉謹綸(Jin-Lun Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以微電鍍法製備三維銅錫介金屬化合物微結構
(Preparation of Three-dimensional Micro Structure of Cu-Sn Intermetallic Compound by Micro-electroplating)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以微陽極導引電鍍法來製作銅錫介金屬化合物三維微結構物。電鍍系統採用線徑125 μm之白金線作為陽極,以線徑為0.643 mm之銅導線作為陰極,於含硫酸銅、硫酸亞錫、檸檬酸鈉與抗壞血酸之鍍浴中進行電鍍,希望製作出含銅、錫兩金屬元素之微柱與微螺旋。研究目標,首先探討鍍浴中添加抗壞血酸對陰極微柱析鍍物表面形貌、化學組成、晶體結構以及還原電位之影響,進而尋求製作最佳之含銅、錫二元金屬微柱之電鍍條件,隨後以此條件出發,探討製作微型螺旋之可行性,並研究微螺旋析鍍角度與製程參數對微型螺旋尺寸與線徑均勻度之影響。
結果顯示: 添加抗壞血酸至鍍浴後進行電鍍,可以達到改善析鍍微柱表面形貌之效果,促進其由顆粒分明之瘤狀外觀轉變為平坦光滑之表面。當兩極間之偏壓設定在3.50 V、兩極之間距控制在140 μm,電鍍所得之含銅、錫二元金屬微柱,其表面形貌最佳,且微柱之橫截面十分緻密,經分析其化學組成為含銅、錫(Cu: 65.9 ± 3.1 at. % 與Sn: 34.1 ± 3.1 at. %) 二元金屬之微柱,晶體結構分析顯示含Cu6Sn5相、Cu相二相。以奈米壓痕儀測量其機械性質,估計出其硬度為1.51 ± 0.10 GPa,簡化模數為73.31 ± 5.57 GPa;以電化學分析量測其抗蝕性能,測得腐蝕電流(Icorr)為0.04×10-2 mA/cm2,線性極化阻抗(RLP)為2877 ohm。
微型螺旋析鍍結果顯示: 微螺旋之第一圈線徑與第二圈線徑之電場強度變化量(△Ed12)越大且析鍍時間越短,析鍍出來之微螺旋線徑越均勻,析鍍角度15 °、製程參數2為含銅、錫二元金屬微螺旋之最佳析鍍參數,微螺旋線徑最為均勻,其d2/d1線徑比值為107 %,d3/d1線徑比值為127 %。
摘要(英) In this study, micro-anode guided electroplating was used to manufacture three dimensional micro-structures of Cu-Sn intermetallic compound. The electroplating system uses a platinum wire with a wire diameter of 125 μm as an anode, and a copper wire with a diameter of 0.643 mm as a cathode, which is electroplated in an electroplating bath containing copper sulfate, stannous sulfate, sodium citrate and ascorbic acid to manufacture three dimensional micro-structure with two metal elements of copper and tin. The goal of this research is to firstly investigate the effect of adding ascorbic acid on the surface morphology, chemical composition, crystal structure and reduction potential of the micro-column in the plating bath, and then seek to find the best electroplating conditions of electroplating micro-columns with two metal elements of copper and tin. Then using these conditions to research the feasibility of making micro-helix, and studying the influence of micro-helix electroplating angle and process parameters on micro-helix size and the variation of wire diameter.
The results showed that after adding ascorbic acid to the electroplating bath not only improved the surface morphology of the micro-column, but also promotes the transformation from a grain-like appearance to a flat and smooth surface. When the bias is set at 3.50 V and the gap is controlled at 140 μm, the copper and tin binary metal micro-column obtained by electroplating have the best surface morphology. After analyzing, its chemical composition is Cu: 65.9 ± 3.1 at.% and Sn: 34.1 ± 3.1 at.%. The crystal structure analysis shows that the crystal structure is Cu6Sn5, Cu coexisting. The mechanical properties of the micro-column were measured by a nanoindenter. The hardness was estimated to be 1.51 ± 0.10 GPa and the reduced modulus was 73.31 ± 5.57 Gpa. The corrosion resistance was measured by electrochemical measurement. The corrosion current (Icorr) was 0.04×10-2 mA/cm2, linear polarization resistance (RLP) is 2877 ohm.
The results of electroplating micro-helix showed that the larger the changed in electric field strength (△Ed12) between the first coil diameter of the micro-helix and the second coil diameter is, the shorter the electrochemical deposition time is; and the more uniform the micro-helix diameter is, the result shows : electrochemical deposition angle 15 ° and process parameter 2 is the best electroplatimg parameter of copper-tin intermetallic compound helix because the diameter of helix wire d1、d2、d3 are the most close, the d2 / d1 ratio is 107 %, the d3 / d1 ratio is 127 %.
關鍵字(中) ★ 微陽極導引電鍍
★ 銅錫微柱
★ 銅錫微螺旋
★ 奈米壓痕
關鍵字(英) ★ Micro-anode guided electroplating
★ Copper-Tin micro-column
★ Copper-Tin micro-helix
★ Nano indentation
論文目次 目錄
摘要 i
ABSTRACT iii
誌謝 v
表目錄 viii
圖目錄 x
第一章、前言 - 1 -
1-1 研究背景 - 1 -
1-2 研究動機 - 2 -
1-3 研究目的 - 3 -
第二章、基礎理論與文獻回顧 - 4 -
2-1 電鍍原理 - 4 -
2-2 合金電鍍 - 4 -
2-3 銅錫合金電鍍 - 5 -
2-4 局部電化學沉積 - 6 -
2-5 局部電化學沉積之發展 - 7 -
2-6 奈米壓痕測試估計材料之硬度與楊氏模數 - 10 -
第三章、研究方法 - 12 -
3-1 研究方法流程 - 12 -
3-2 即時影像監控微陽極導引電鍍系統之架設 - 12 -
3-3 微陽極與陰極製備 - 14 -
3-4 鍍液調配 - 14 -
3-5 實驗步驟 - 15 -
3-5-1微柱析鍍參數探討 - 15 -
3-5-2微螺旋結構之析鍍角度與製程參數之探討 - 16 -
3-5-3形貌觀察 - 17 -
3-5-4 橫截面形貌觀察 - 17 -
3-5-5化學組成分析 - 17 -
3-5-6 晶體結構分析 - 18 -
3-5-7 奈米壓痕測試 - 18 -
3-5-8 陰極極化曲線量測 - 18 -
3-5-9 抗蝕性能量測 - 19 -
3-5-10 電場模擬 - 20 -
第四章、結果 - 21 -
4-1 銅錫介金屬化合物微柱析鍍參數探討 - 21 -
4-1-1添加抗壞血酸對析鍍銅錫介金屬化合物三維微結構之影響 - 21 -
4-1-1-1微柱形貌觀察 - 21 -
4-1-1-2 平均析鍍電流與平均析鍍速率之分析 - 22 -
4-1-1-3 化學組成分析 - 23 -
4-1-1-4 晶體結構分析 - 23 -
4-1-1-5 鍍液陰極極化量測 - 23 -
4-1-2微柱之析鍍參數探討-形貌觀察 - 24 -
4-1-3微柱之析鍍參數探討-橫截面觀察 - 25 -
4-1-4 微柱之析鍍參數探討-平均析鍍電流與平均析鍍速率之分析 - 26 -
4-1-5微柱之析鍍參數探討-化學組成分析 - 27 -
4-1-6微柱之析鍍參數探討-晶體結構分析 - 27 -
4-1-7微柱之析鍍參數探討-奈米壓痕測試 - 28 -
4-1-8 微柱之析鍍參數探討-抗蝕性能量測 - 29 -
4-1-9微柱之析鍍參數探討-電場強度模擬 - 30 -
4-2 微螺旋析鍍參數探討 - 31 -
4-2-1 微螺旋直徑與螺距量測 - 32 -
4-2-2 微螺旋線徑量測 - 32 -
4-2-3 微螺旋析鍍之電場強度模擬 - 33 -
第五章、討論 - 35 -
5-1 添加抗壞血酸對析鍍銅錫介金屬化合物微柱之影響 - 35 -
5-2 析鍍參數對析鍍微柱之影響 - 35 -
5-2-1析鍍偏壓以及析鍍間距與電場強度之關係 - 35 -
5-2-2 析鍍偏壓對微柱形貌之影響 - 36 -
5-2-3 析鍍參數對橫截面之影響 - 37 -
5-2-4 析鍍參數對機械性質之影響 - 37 -
5-2-5 析鍍參數對抗蝕性能之影響 - 38 -
5-2-6 最佳析鍍參數之選擇 - 39 -
5-3 析鍍角度與製程參數對析鍍微螺旋之影響 - 40 -
5-3-1 析鍍角度與製程參數對螺旋直徑與螺距之影響 - 40 -
5-3-2 電場強度與螺旋線徑均勻度之關係 - 40 -
第六章、結論與前瞻 - 43 -
參考文獻 - 45 -
參考文獻 參考文獻
1. Bruck, R., K. Hahn, and J. Stienecker, Technology description methods for LIGA processes. Journal of Micromechanics and Microengineering, 5(2), p. 196, 1995.
2. Abraham, M., et al. Laser LIGA: a cost-saving process for flexible production of microstructures. 1995.
3. Brinkmann, U. and S. Ishizaka, Laser LIGA-excimer laser micro-structuring and replication. Lambda Phys. Highlights, 45, p. 1-3, 1994.
4. Rai-Choudhury, P., Handbook of microlithography, micromachining, and microfabrication: microlithography. Vol. 1. 1997.
5. Farahani, R.D., K. Chizari, and D. Therriault, Three-dimensional printing of freeform helical microstructures: a review. Nanoscale, 6(18), p. 10470-10485, 2014.
6. Li, X., et al., Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Materials Letters, 63(3-4), p. 403-405, 2009.
7. Bertol, L.S., et al., Medical design: direct metal laser sintering of Ti–6Al–4V. Materials & Design, 31(8), p. 3982-3988, 2010.
8. 郭哲男 and 蘇郁倫, 電子束3D列印技術. p. 16-19, 2016.
9. Madden, J.D. and I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 5(1), p. 24-32, 1996.
10. Zangari, G., Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 5(2), p. 195-218, 2015.
11. Brenner, A., Electrodeposition of alloys: principles and practice. 2013.
12. Walsh, F. and C. Low, A review of developments in the electrodeposition of tin-copper alloys. Surface and Coatings Technology, 304, p. 246-262, 2016.
13. Padhi, D., et al., Electrodeposition of copper–tin alloy thin films for microelectronic applications. Electrochimica acta, 48(8), p. 935-943, 2003.
14. Correia, A.N., M.X. Facanha, and P. de Lima-Neto, Cu–Sn coatings obtained from pyrophosphate-based electrolytes. Surface and Coatings Technology, 201(16-17), p. 7216-7221, 2007.
15. Abd El Rehim, S., S. Sayyah, and M. El Deeb, Tin-copper alloy electrodeposition from acidic gluconate baths. Transactions of the IMF, 78(2), p. 74-78, 2000.
16. Han, C., Q. Liu, and D.G. Ivey. Development of simple electrolytes for the electrodeposition and electrophoretic deposition of Pb-free, Sn-based alloy solder films. in CS MANTECH Conference, Austin, Texas, USA. 2007.
17. Heidari, G., et al., Electrodeposition of Cu–Sn alloys: theoretical and experimental approaches. Journal of Materials Science: Materials in Electronics, 26(3), p. 1969-1976, 2015.
18. Ju?k?nas, R., et al., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys. Electrochimica Acta, 52(3), p. 928-935, 2006.
19. El-Giar, E. and D. Thomson. Localized electrochemical plating of interconnectors for microelectronics. in WESCANEX 97: Communications, Power and Computing. Conference Proceedings., IEEE. 1997.
20. 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳. 國立中央大學, 碩士論文, 2000.
21. Seol, S., et al., Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. electrochemical and solid-state letters, 7(9), p. C95-C97, 2004.
22. Seol, S.K., et al., Localized Electrochemical Deposition of Copper Monitored Using Real?Time X?ray Microradiography. Advanced Functional Materials, 15(6), p. 934-937, 2005.
23. Seol, S.K., et al., Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochemical and solid-state letters, 10(5), p. C44-C46, 2007.
24. Lin, C., et al., Improved copper microcolumn fabricated by localized electrochemical deposition. Electrochemical and Solid-State Letters, 8(9), p. C125-C129, 2005.
25. Lee, C.-Y., C.-S. Lin, and B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 18(10), p. 105008, 2008.
26. Habib, M., S. Gan, and M. Rahman, Fabrication of complex shape electrodes by localized electrochemical deposition. Journal of Materials Processing Technology, 209(9), p. 4453-4458, 2009.
27. Wang, F., F. Wang, and H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns. Journal of The Electrochemical Society, 163(10), p. E322-E327, 2016.
28. Wang, F., H. Xiao, and H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Scientific reports, 6, p. 26270, 2016.
29. Kamaraj, A.B., et al., Experimental study on the porosity of electrochemical nickel deposits. Procedia Manufacturing, 10, p. 478-485, 2017.
30. Wang, F., et al., Effect of Voltage and Gap on Micro-Nickel-Column Growth Patterns in Localized Electrochemical Deposition. Journal of The Electrochemical Society, 164(6), p. D297-D301, 2017.
31. Wang, F., et al., Fabrication of Micro Copper Walls by Localized Electrochemical Deposition through the Layer by Layer Movement of a Micro Anode. Journal of The Electrochemical Society, 164(12), p. D758-D763, 2017.
32. Lin, J., et al., Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. Journal of Micromechanics and Microengineering, 15(12), p. 2405, 2005.
33. Chang, T., et al., Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 17(11), p. 2336, 2007.
34. Yang, J., et al., Assessing the degree of localization in localized electrochemical deposition of copper. Journal of Micromechanics and Microengineering, 18(5), p. 055023, 2008.
35. Lin, J., et al., Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. Journal of Micromechanics and Microengineering, 19(1), p. 015030, 2008.
36. Yang, J., et al., Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process. Journal of Micromechanics and Microengineering, 19(2), p. 025015, 2009.
37. Lin, J., et al., On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating. Electrochimica Acta, 54(24), p. 5703-5708, 2009.
38. Chen, T.-C., et al., The Development of a Real-Time Image Guided Micro Electroplating System. Int. J. Electrochem. Sci, 5, p. 1810-1820, 2010.
39. 邱永傑, 即時影像引導連續式微電鍍之立體微結構製作研究. 國立中央大學, 碩士論文, 2011.
40. 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性
質分析. 國立中央大學, 碩士論文, 2005.
41. 張瑞慶, 奈米壓痕技術與應用. 聖約翰科技大學.
42. 楊仁泓, 局部電化學沈積法之一維結構製程及機械性質量測. 大葉大學, 碩士論文, 2004.
43. Chen, T., et al. Effect of voltage and gap on the morphology of the Ni micro-column by localized electrochemical deposition. in Electronic Packaging Technology (ICEPT), 2016 17th International Conference on. 2016.
44. Pane, S., et al., The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry communications, 13(9), p. 973-976, 2011.
45. Varea, A., et al., Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int. J. Electrochem. Sci, 7, p. 1288-1302, 2012.
46. Tsao, L. and C. Chen, Corrosion characterization of Cu–Sn intermetallics in 3.5 wt.% NaCl solution. Corrosion Science, 63, p. 393-398, 2012.
47. Xu, W., et al., Effects of Porosity on Mechanical Properties and Corrosion Resistances of PM-Fabricated Porous Ti-10Mo Alloy. Metals, 8(3), p. 188, 2018.
48. Quintero, O.M.S., et al., Influence of the microstructure on the electrochemical properties of Al-Cr-N coatings deposited by co-sputtering method from a Cr-Al binary target. Materials Research, 16(1), p. 204-214, 2013.
49. Sanabria, C., A new understanding of the heat treatment of Nb-Sn superconducting wires. 2017.
50. 官方網站, 檢自: http://www.mimn-taiy.com.tw/product_detal.php?sid=22&id=86.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2018-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明