博碩士論文 105329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.20.205.228
姓名 紀宇哲(Yu-Che Chi)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
(Improvement of fracture toughness on Fe-based bulk metallic glass and fabrication of its powder for additive manufacturing)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Fe-Cr-Mo-C-B-Y-Co七元合金成分作為基礎,透過真空感應高週波熔煉並澆鑄成鐵基金屬玻璃合金鑄錠,再以氣噴粉體法(Gas atomization)製備出鐵基金屬玻璃球型粉體,每一爐次粉體均經搖篩機篩分後,再以X光繞射分析確認粉體非晶性。研究結果顯示粉體粒徑53μm以下皆為非晶態,粉體粒徑>53 μm則有微量碳化鉻(Cr23C6)結晶相產生;同時,隨著粉體粒徑上升,碳化鉻結晶峰之峰值強度也隨之提高;粉體外觀呈現球形且其截面為實心構造,適合積層製造使用。積層製造為目前被認為最有能力實行異型水路製作的技術,未來會將鐵基金屬玻璃粉體應用於積層製造MIM異型水路模具。然而,鐵基金屬玻璃雖擁有高強度、高硬度及優異的耐腐蝕性,但由於其韌性仍嫌不足,必須加以提升,方可應用在MIM異型水路模具上。所以本研究同時致力於鐵基金屬玻璃韌性提升之研究,藉由微量添加不同比例之銅元素進行改質,藉以提升此基材之破裂韌性。以真空傾倒式鑄造製備出4 mm之鐵基金屬玻璃棒材時,由於內添加之銅元素於鐵基合金中的鐵元素在高溫熔融狀態下不互溶,於急速冷卻下會被析出至鐵基合金的基地組織中,同時於基地組織中也可觀察到另一析出相,碳化釔(Y2C)析出相。研究結果顯示,添加銅元素之鐵基金屬玻璃之破裂韌性比其基材有顯著之提升,其破裂韌性數值由4.78 ± 0.9 MPa?√m提升至8.18± 1 MPa?√m。
摘要(英) In this study, the composition of Fe-Cr-Mo-C-B-Y-Co 7 components was selected as the base alloy to prepare the alloy ingot by vacuum induction melting. Then, the alloy ingots were re-melted and fabricated into metallic glass powder by inert gas atomization in Industrial Technology Research Institute (ITRI, Hsinchu). The atomized powders were sieved by a sieve shaker to classify the powder size and obtain the size distribution of powder. Different sizes’ powders were characterized by X-ray diffraction to identify its amorphous state, respectively. Meanwhile, the surface morphology and cross-sectional image of atomized powders were examined by scanning electron microscope.
As a result, the atomized powders with particle size less than 53μm exhibit a fully amorphous state. On the contrary, the powder with particle size above 53μm was found to contain a little chromium carbide (Cr23C6) phase co-existing with the amorphous matrix. The intensity of Cr23C6 crystalline peak increases with increasing the powder size. In addition, the appearance and cross-sectional image of the atomized powders were revealed to have a spherical shape and solid structure, respectively by the observation of scanning electron microscope. These atomized Fe-based MG powders are recognized suitable for additive manufacturing application on metal injection mold (MIM). However, though the Fe-based metallic glass alloy has excellent glass forming ability, high strength, high hardness, and superior corrosion resistance, its fracture toughness may still not strong enough to meet the requirement of MIM mold and need to be further improved. Therefore, the Fe-based metallic glass alloy was modified by adding small amount of Cu to enhance its fracture toughness. The Fe-based bulk metallic glass (BMG) rods with 4 mm in diameter were successfully fabricated by vacuum tilt casting. During rapid cooling, Cu acts as a heterogeneous nucleation site to induce -phase iron precipitation 1n the Fe-based amorphous matrix. The results show that Fe-based BMG added with 3 at% Cu presents higher fracture toughness value (8.18± 1 MPa?√m) than the based one (4.78 ± 0.9 MPa?√m ).
關鍵字(中) ★ 鐵基金屬玻璃
★ 氣噴粉體法
★ 積層製造
★ 破裂韌性
關鍵字(英) ★ Fe-based bulk metallic glass
★ gas atomization
★ additive manufacturing
★ fracture toughness
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 文獻回顧 8
2-1 金屬玻璃合金概述 8
2-2 金屬玻璃合金發展歷史 8
2-2 鐵基金屬玻璃合金 10
2-3 金屬玻璃合金材料設計與製作 12
2-3-1 實驗歸納法則 12
2-3-2 金屬玻璃合金製程 13
2-4 金屬玻璃合金性質 15
2-4-1 熱力學 15
2-4-2 特徵溫度: 16
2-4-3 玻璃形成能力(GFA,glass forming ability) 17
2-5 機械性質 18
2-5-1 維克氏硬度量測 19
2-5-2 破裂韌性 19
2-6 氣噴法粉體製備 20
2-7 積層製造 21
2-7-1 選擇性雷射融化燒結 22
2-7-2 鐵基金屬玻璃粉體應用於積層製造 23
第三章 實驗步驟與方法 31
3-1 實驗目的 31
3-2 合金材料製備 31
3-2-1 合金配製 31
3-2-2 鑄錠熔煉 32
3-2-3 粉體製備(氣噴粉體法) 32
3-2-4 XRD確認粉體於各粒徑之結構 33
3-2-5 SEM觀察球狀粉體表面形貌 33
3-3 積層製造 34
3-4 合金熔煉 34
3-5 真空傾倒式鑄造法(Tilt casting) 35
3-6 材料性質分析 35
3-6-1積層製造工件之能量密度計算 35
3-6-2積層製造工件之立體顯微鏡分析 36
3-6-3 微結構分析(X光繞射) 36
3-6-4 熱性質分析 36
3-6-5 塊材硬度量測 37
3-6-6 楊式模數量測 37
3-6-7 破裂韌性量測 38
3-6-8 表面形貌分析 38
第四章 結果與討論 49
4-1 鐵基金屬玻璃氣噴粉之性質分析 49
4-1-1 製備鐵基金屬玻璃粉體 49
4-1-2 X-ray繞射分析 50
4-1-3 掃描式電子顯微鏡表貌觀察 50
4-2 粉體雷射積層製造測試分析 51
4-2  粉體燒結面型參數 51
4-2-1 立體顯微鏡觀察 52
4-2-2 面型燒熔層與層積層掃描方式相同 53
4-3 微量添加銅之鐵基金屬玻璃塊材 53
4-3-1 X-ray繞射分析 54
4-3-2 熱性質分析 54
4-3-3 機械性質分析 55
4-3-3-1 塊材硬度量測與破裂韌性量測 56
4-3-3-2 壓縮測試結果 56
4-3-4 掃描式電子顯微鏡 56
第五章 結論 88
第六章 參考文獻 91
參考文獻 [1] A. C. Lund, " Topological and chemical arrangement of binary alloys during severe deformation ", Journal of Applied Physics, Vol. 95 pp.4815-4822 (2004).
[2] H. S. Chen , H.J. Leamy, and C. E. Miller, "Preparation of glassy metals", Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] R. Babilas, R. Nowosielski, "Iron-based bulk amorphous alloys", Archives of materials science and engineering, Vol.44 Issue 1 pp.5-27 (2010).
[4] A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer, (2001).
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol. 48, pp. 279-306, (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication", Materials Science and Engineering, Vol. A449–451, pp. 898–902, (2007).
[7] Jason Shian-Ching Jang, Pei-Hua Tsai, An-Zin Shiao, Tsung-Hsiung Li, Chih-Yu Chen, Jinn Peter Chu, Jenq-Gong Duh, Ming-Jen Chen, Shih-Hsin Chang, Wen-Chien Huang, "Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65, pp. 56-60, (2015).
[8] P. H. Tsai, A. C. Xiao, J.B. Li, J.S.C. Jang, J.P. Chun, J.C. Huang," Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of alloys and compounds, Vol 586,pp.94-98, (2014).
[9] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering", proceeding of the institution of mechanical engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[10] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol 48, pp. 279-306, (2000).
[11] J. Kramer, "Produced the first amorphous metals through vapor deposition", Annals of Physics, Vol. 19, pp. 37, (1934).
[12] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt", Journal of Research of the National Bureau of Standards, Vol. 44, pp. 109-122, (1950).
[13] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys", Nature, Vol. 187, pp. 869-870, (1960).
[14] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43, pp. 364, (1980).
[15] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied Physics Letters", Vol. 43, pp. 1017-1019, (1983).
[16] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[17] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method", Material Transactions JIM, Vol. 31, pp. 425-428, (1990).
[18] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions JIM, Vol. 33, pp. 937-945, (1992).
[19] A. Inoue, T. Nakamurat, N. Nishiyanmatt, and T.Masumoto, "Recent development and application products of bulk glassy alloys" , Acta Materialia, Vol. 59 pp.2243-2267, (2011).
[20] A.Inoue, Y. Shinohara, J. S. Gook, " Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting", Material Transactions, Vol. 36, pp.1427-1433, (1995).
[21] R. Babilas, R. Nowosielski , "Iron-based bulk amorphous alloys", Archives of Materials Science and Engineering, Vol. 44, Issue 1, pp. 5-27, (2010).
[22] A. Inoue, B.-L Shen, H.Koshiba, "Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys" , Acta Materialia, Vol. 52, Issue 6, pp. 1631-1637, (2004).
[23] J. Shen, Q.-J. Chen, J.-F. Sun, H.-B. Fan, and G. Wang, " Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy", Applied physics letters, Lett.90, (2007).
[24] P.-H. Tsai, A.-C. Xiao, J.-B. Li, J.-S.-C. Jang, J.-P. Chu, J.-C. Huang, "Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of Alloys and Compounds, Vol. 586, Issue 6, pp. 94-98, (2014).
[25] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[26] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, (1994).
[27] C. Suryanarayana, A. Inoue, "Bulk Metallic Glassed", p.61, (2011).
[28] A. Inoue, Materials Transactions JIM, Vol. 36, pp. 866, (1995).
[29] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses", Acta Materilia, Vol. 50, pp. 3501-3512, (2002).
[30] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101, pp. 086108-1-3, (April 2007).
[31] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh , "Glass forming ability of bulk glass forming alloys" , Scr Mater , Vol. 36 , P. 783 , (1997).
[32] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion", Intermetallics,Vol. 18 , pp. 883-888 , (2010).
[33] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal , S. Kazi , S. Badshah , R.U. Khan , "Energy Absorption Ability of Thin-Walled Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static Axial Compression" , Journal of Advanced Research in Applied Mechanics , Vol. 18 , pp. 1-14, (2016).
[34] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements", Journal of the American Ceramic Society, Vol.6, pp. 533-538, (1981).
[35] Randall M. German, Powder Metallurgy Science, Second edition, (1994).
[36] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in Gas Atomization", Mater. Sci. Appl. Vol. 2, pp. 87-96, (2011).
[37] 蔡恆毅 , "選擇性雷射燒熔製程" , 工業材料雜誌 , Vol. 369, pp. 112-121, (2017).
[38] B.C. Gross, J.L. Erkal, S.Y. Lockwood, Chengpeng Chen,and Dana M. Spence , " Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences", Analytical Chemistry, Vol. 86, pp. 3241-3243, (2014).
[39] I. Yadroitsev, Ph. Bertrand, I. Smurov, "Parametric analysis of the selective laser melting process ", Applied Surface Science, Vol. 253, pp. 8064–8069, (2007).
[40] EO. Olakanmi, RF. Cochrane, KW. Dalgarno, " Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si Powders", J Mater Process Technol, Vol. 211, pp. 113–121, (2011).
[41] T.S. Srivatsan, T.S. Sudarshan, Additive Manufacturing: Innovations, Advances, and Applications, CRC Press, (2015).
[42] I.S. Grigoriev, E.Z. Meilikhov, Physical Quantities, Handbook, Energoatomizdat, Moscow, (1991).
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明