博碩士論文 105329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.205.96.39
姓名 潘柏瑞(Bo-Rui Pan)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 添加石墨烯助導劑對活性碳超高電容電極性質的影響
(Effects of Graphene Additives on Supercapacitive Properties of Activated Carbon Electrodes)
相關論文
★ 鋅空氣電池之電解質開發★ 耐高壓離子液體電解質
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 石墨烯負極和離子液體電解液於鈉二次電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是利用石墨烯作為助導劑並添加於活性碳,以製備活性碳/石墨烯複合電極材料。期望藉由石墨烯之添加、不同石墨烯助導劑的改質、活性碳與石墨烯之間的比例調整,使超高電容器具有更為優異之電化學性質表現。電解液則是選用商業上較常使用的1 M TEABF4/PC (Tetraethylammonium Tetrafluoroborate)/(Propylene Carbonate)做為電解液。
首先探討不同改質之石墨烯助導劑對於超高電容器的影響:本研究將採用四種不同的石墨烯作為助導劑並進行比較,分別為於氮氣的氣氛下將GO以升溫速率5 oC/min升溫至900 oC並持溫1 hr,製備無孔洞石墨烯 (GEs),以及以升溫速率40 oC /min升溫至900 oC並持溫1 hr,製備多孔石墨烯 (HGEs)。至於氮摻雜之多孔石墨烯 (NHGEs)則是於NO的氣氛下,將GO以升溫速率40 oC /min升溫至900 oC並持溫1 hr後製備而成。此外,本研究也將選用準一維結構之石墨烯奈米條 (GNSPs)作為助導劑,藉以探討維度效應之石墨烯助導劑對於超高電容的影響,並且進一步地針對不同比例之GNSPs助導劑的添加量進行研究,其添加的比例分別為AC:GNSPs = 80:1、40:1、20:1。
在前述四種石墨烯助導劑之中,AC:GNSPs = 40:1具有最為優異之電性表現。由材料分析能夠觀察到:GNSPs屬於準一維結構之石墨烯,且其維度相較於另外三種還原氧化石墨烯 (GEs、HGEs、NHGEs)小;在電化學分析方面,GNSPs優異的導電性與其較小的尺度,將有助於提升超高電容器之電性表現,並改善漏電流等特性。研究結果顯示,AC/GNSPs於電流密度1 A/g時,擁有116 F/g之電容值;於電流密度50 A/g時,仍有54 F/g之電容值;於功率密度31.5 kW/kg時,具有能量密度11.7 Wh/kg,且於六千圈充放電後仍有85%的維持率。相較於AC/GNSPs,未添加石墨烯助導劑之ACs,其高速電容值為21 F/g,且於功率密度31.5 kW/kg時,能量密度僅有4.6 Wh/kg。
摘要(英) In this study, a AC/graphene composite was provided which used graphene as additive. Through the addition of graphene, different modifications of graphene additive and the different AC/graphene ratios enhance supercapacitor performance. 1 M TEABF4 in PC was used as commercial electrolyte.
Firstly, we studied the effect of different modified graphene additive on supercapacitor. We chose four types of graphene additives: Graphene (GEs) and holey graphene (HGEs) were made by GO with heating rate 5 oC/min and 40 oC/min, respectively, to 900 oC for 1 hr in N2 atmosphere. Nitrogen-doped holey graphene (NHGEs) was produced by GO with heating rate 40 oC/min to 900 oC for 1 hr in NO atmosphere. Besides, we also provided the quasi-one dimension graphene additive (graphene nanostripes, GNSPs) to study the effect of reduced dimension graphene on supercapacitor. Finally, we studied the effect of different AC/graphene ratios.
In this study, AC/GNSPs delivers a capacitance of 116 F/g and 54 F/g at 1 A/g and 50 A/g, respectively. At power density of 31.5 kW/kg, the energy density of AC/GNSPs is 11.7 Wh/kg which is around 2.5 times higher than ACs (4.6 Wh/kg). After 6000 cycles, the retention of AC/GNSPs is 85%.
關鍵字(中) ★ 超高電容器
★ 活性碳
★ 氮摻雜多孔石墨烯
★ 石墨烯奈米條
關鍵字(英) ★ supercapacitor
★ activated carbon
★ nitrogen-doped holey graphene
★ graphene nanostripes
論文目次 摘要 i
Abstract iii
誌謝 iv
總目錄 vi
圖目錄 ix
表目錄 xii
第一章 序論 1
1-1 前言 1
1-2 研究動機 1
第二章 研究背景與文獻回顧 3
2-1 超高電容器簡介 3
2-2影響電雙層電容器電容值的因素 6
2-3 石墨烯之孔洞影響 8
2-3-1 孔洞於石墨烯之效益 8
2-3-2 多孔石墨烯的製備方法 9
2-4 氮摻雜的影響 12
2-4-1 摻氮原因 12
2-4-2 摻氮方法 13
2-5 奈米帶石墨烯 15
2-5-1 奈米帶石墨烯之製備方法 15
2-5-2 奈米帶石墨烯應用於超級電容器之優點 18
2-6 石墨烯助導劑於活性碳電極之影響 21
2-6-1 添加石墨烯助導劑之原因 21
2-6-2 石墨烯助導劑於活性碳電極之超高電容器的發展近況 25
第三章 實驗方法與步驟 33
3-1 碳材之準備 33
3-1-1 活性碳材之來源 33
3-1-2 石墨烯之製備 33
3-1-3石墨烯奈米條之來源 34
3-2 材料特性分析 35
3-2-1 表面形貌之分析 35
3-2-2官能基鑑定與缺陷結構分析 35
3-3 電化學量測之實驗步驟 37
3-3-1 計時電位法 (Chronopotentimetry, CP) 38
3-3-2 交流阻抗 (Electrochemical Impedance Spectroscopy, EIS) 39
3-3-3 漏電流測試 (Leakage Current) 39
3-3-4 循環穩定性分析 (Cycle Life Test) 40
第四章 結果與討論 41
4-1 活性碳電極材料添加不同石墨烯助導劑之比較 41
4-1-1 材料結構分析 41
4-1-2不同碳材之表面組成與缺陷結構 47
4-1-3 電化學性質分析 54
4-2 活性碳電極材料添加不同含量石墨烯奈米條之比較 74
4-2-1材料結構分析 74
4-2-2電化學性質分析 77
第五章 結論 93
參考文獻 96
參考文獻 1. Simon, P., et al., Materials for electrochemical capacitors. Nature materials, 2008. 7: p. 845-854.
2. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44: p. 7484-7539.
3. Lim, E., et al., A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale, 2016. 8: p. 7827-7833.
4. 28. 彭佑宇,“多孔洞石墨烯及其複合材料製備與應用於超級電容之特性研究”,博士論文,國防大學理工學院國防科學研究所化學組,第1-5頁,2016。
5. Yang, C.H., et al., Holey Graphene Nanosheets with Surface Functional Groups as High-Performance Supercapacitors in Ionic-Liquid Electrolyte. ChemSusChem, 2015. 8: p. 1779-1786.
6. Zhu, Y.W., et al., Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011. 332: p. 1537-1541.
7. Kim, T.Y., et al., Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores. ACS Nano, 2013. 7: p. 6899-6905.
8. Cui, C., et al., Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V. Journal of the American Chemical Society, 2014. 136: p. 2256-2259.
9. Zhang, L.L., et al., Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy & Environmental Science, 2012. 5: p. 9618-9625.
10. Wang, H., et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011. 21: p. 5430-5434.
11. Ma, C., et al., Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. Journal of Materials Chemistry, 2012. 22: p. 8911-8915.
12. Liu, H., et al., Chemical doping of graphene. Journal of Materials Chemistry, 2011. 21: p. 3335-3345.
13. Usachov, D., et al., Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 2011. 11: p. 5401-5407.
14. Lee, S.U., et al., Designing Nanogadgetry for Nanoelectronic Devices with Nitrogen-Doped Capped Carbon Nanotubes. Small, 2009. 5: p. 1769-1775.
15. Béguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Advanced materials, 2014. 26: p. 2219-2251.
16. Jurewicz, K., et al., Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochimica Acta, 2003. 48: p. 1491-1498.
17. Yu, M., et al., Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Advances, 2017. 7: p. 15293-15301.
18. Shafeeyan, M.S., et al., A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010. 89: p. 143-151.
19. 王晓娇., et al., 超级电容器用含氮多孔炭电极材料的研究进展. 材料導報, 2011. 25(4A): p. 24-27+ 32.
20. Suzuki, T., et al., Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial & engineering chemistry research, 1994. 33: p. 2840-2845.
21. Wang, X., et al., Etching and narrowing of graphene from the edges. Nature Chemistry, 2010. 2: p. 661-665.
22. Abramova, V., et al., Meniscus-Mask Lithography for Narrow Graphene nanoribbons. ACS Nano, 2013. 7: p. 6894-6898.
23. Long, C., et al., From nanographene and graphene nanoribbons to sheets: chemical synthesis. Angewandte Chemie International Edition, 2012. 51: p. 7640-7654.
24. Kimouche, A., et al., Ultra-narrow metallic armchair graphene nanoribbons. Nature Communications, 2015. 6: p. 10177.
25. Ruffieux, P., et al., On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016. 531: p. 489-493.
26. Cai, J., et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010. 466: p. 470-473.
27. Vo, T.H., et al., Large-scale solution synthesis of narrow graphene nanoribbons. Nature Communications, 2014. 5: p. 3189.
28. Genorio, B., et al., In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks. ACS Nano, 2012. 6: p. 4231-4240.
29. Kosynkin, D.V., et al., Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes by potassium vapor. ACS Nano, 2011. 5: p. 968-974.
30. Bo, Z., et al., Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 2013. 5: p. 5180-5204.
31. Mendoza-Sánchez, B., et al., Synthesis of Two-Dimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016. 28: p. 6104-6135.
32. Karnan, M., et al., Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochimica Acta, 2017. 228: p. 586-596.
33. Ping, Y., et al., Edge-riched graphene nanoribbon for high capacity electrode materials. Electrochimica Acta, 2017. 250: p. 84-90.
34. Frackowiak, E., et al., Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39: p. 937-950.
35. Liu, L., et al., Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016. 45: p. 4340-4363.
36. Kaempgen, M., et al., Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 2009. 9: p. 1872-1876.
37. Lin, Z., et al., Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Advanced Energy Materials, 2016. 6: p. 1600554.
38. Stoller, M.D., et al., Graphene-based ultracapacitors. Nano Letters, 2008. 8: p. 3498-3502.
39. Ke, Q., et al., Graphene-based materials for supercapacitor electrodes-A review. Journal of Materiomics, 2016. 2: p. 37-54.
40. Le, L.T., et al., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochemistry Communications, 2011. 13: p. 355-358.
41. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
42. Yang, X., et al., Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013. 341: p. 534-537.
43. Brownson, D.A.C., et al., Electrochemistry of graphene: not such a beneficial electrode material?. RSC Advances, 2011. 1: p. 978-988.
44. Zhang, Y., et al., Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide. Applied Surface Science, 2016. 390: p. 385-392.
45. Hsu, C.C., et al., High-yield single-step catalytic growth of graphene nanostripes by plasma enhanced chemical vapor deposition. Carbon, 2018. 129: p. 527-536.
46. AS, D., et al., Optimization of the Process Parameters for the Preparation of Activated Carbon from Low Cost Phoenix Dactylifera Using Response Surface Methodology. Austin Chemical Engineering, 2015. 2: p. 1021.
47. Simon, P., et al., Nanostructured Carbons: Double-Layer Capacitance and More. Electrochemical Society Interface, 2008. 17: p. 38-43.
48. Geim, A.K., et al., The rise of graphene. Nature Materials, 2007. 6: p. 183-191.
49. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446: p. 60-63.
50. Calizo, I., et al., Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters, 2007. 7: p. 2645-2649.
51. Zheng, C., et al., Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. Journal of Power Sources, 2014. 258: p. 290-296.
52. Lee, Y.J., et al., Activated carbon aerogel containing graphene as electrode material for supercapacitor. Materials Research Bulletin, 2014. 50: p. 240-245.
53. Xie, Q., et al., Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. Journal of Solid State Electrochemistry, 2016. 20: p. 449-457.
54. Chen, Z., et al., Porous Active Carbon Layer Modified Graphene for High-performance Supercapacitor. Electrochimica Acta, 2017. 237: p. 102-108.
55. Wang, Z.H., et al., Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material. Journal of Nanoparticle Research, 2017. 19: p. 77.
56. Gao, Z., et al., Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. Journal of Power Sources, 2017. 337: p. 25-35.
57. Xu, L., et al., Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Advances, 2017. 7: p. 31342-31351.
58. Li, Y., et al., Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Advances, 2017. 7: p. 19098-19105.
59. Xu, L., et al., Synthesis and characterization of free-standing activated carbon/reduced graphene oxide film electrodes for flexible supercapacitors. RSC Advances, 2017. 7: p. 45066-45074.
60. Xu, L., et al., High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Scientific Reports, 2017. 7: p. 12857.
61. Tseng, L.H., et al., Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochimica Acta, 2018. 266: p. 284-292.
62. Yu, S., et al., KOH activated carbon/graphene nanosheets composites as high performance electrode materials in supercapacitors. RSC Advances, 2014. 4: p. 48758-48764.
63. Azam, M.A., et al., Electrochemical performance of activated carbon and graphene based supercapacitor. Materials Technology, 2015. 30: p. A14-17.
64. Li, X., et al., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon, 2018. 129: p. 236-244.
65. Zhu, Q., et al., Activated Carbon/Graphene Hybrid Aerogels as Electrode Materials for High Performance Supercapacitors. ChemistrySelect, 2017. 2: p. 4456-4461.
66. Du, W., et al., Surface modification by graphene oxide: An efficient strategy to improve the performance of activated carbon based supercapacitors. Chinese Chemical Letters, 2017. 28: p. 2285-2289.
67. Chen, Y., et al., High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Advances, 2012. 2: p. 7747-7753.
68. Jung, S.H., et al., Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Scientific Reports, 2018. 8: p. 1915.
69. Chen, Y.R., et al., Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder. Solid State Sciences, 2014. 37: p. 80-85.
70. Zhang, H., et al., Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors. ACS Applied Materials Interfaces, 2012. 4: p. 3239-3246.
71. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006. 97: p. 187401.
72. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and non-adiabatic effects. Solid State Communications, 2007. 143: p. 47-57.
73. Dimiev, A.M., et al., Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano, 2013. 7: p. 2773-2780.
74. Dimiev, A.M., et al., Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra. ACS Nano, 2012. 6: p. 7842-7849.
75. Ike, I.S., et al., Understanding Performance Limitation and Suppression of Leakage Current or Self-Discharge in Electrochemical Capacitors: A Review. Physical Chemistry Chemical Physics, 2016. 18: p. 661-680.
76. Kowal, J., et al., Detailed analysis of the self-discharge of supercapacitors. Journal of Power Sources, 2011. 196: p. 573-579.
指導教授 張仍奎 李勝偉(Jeng-Kuei Chang Sheng-Wei Lee) 審核日期 2018-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明