博碩士論文 105329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:13.59.108.218
姓名 黃子曦(Tzu-Hsi Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高效能鉑基觸媒應用於氧氣還原反應的製備與機制之研究
(The Preparation and Mechanistic Study of Highly Effective Pt-based Catalysts Toward Oxygen Reduction Reaction)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 燃料電池為藉由燃料的化學能透過電化學反應的方式轉化為電能的裝置,因其具有高功率密度、相對較低的工作溫度和零排放,而成為具潛力之運輸和攜帶式應用中的替代電源。鉑 (platinum, Pt) 因其獨特的吸附能和高活性,被認為是燃料電池應用中最佳之觸媒材料。然而Pt有較強的親氧性會降低陰極氧還原反應 (oxygen reduction reaction, ORR) 的活性並使活性位點氧化,導致穩定性不佳,並不利於燃料電池技術的商業性。因此開發高效且穩定的Pt基觸媒對於質子交換膜燃料電池 (proton exchange membrane fuel cells, PEMFCs) 具有相當重要意義。本研究開發了幾種用於PEMFCs中的Pt基觸媒,探討其精細結構的控制和表面改質對於ORR性能增益的重要性。
本論文的研究主題分為三部分,第一部分探討Pt奈米棒 (nanorods, NRs)上金屬氧化物的修飾對ORR的性能影響,並證明了各種金屬氧化物 (metal oxide, MO) (M = Ni, Rh, Pd, Ag, Ir, Sn) 對Pt NRs觸媒的活性和穩定性有不同程度的增益。透過質量活性 (MAextra) 的計算,我們進一步的揭示了各種PtMOx觸媒的MAextra,其趨勢為PtSnOx > PtAgOx > PtNiOx > PtPdOx > PtRhOx > PtIrOx,可發現PtSnOx觸媒表現出最佳的活性 (MAtotal = 638 mA/mgPt),在加速穩定度測試 (accelerated durability test, ADT) 後仍保有高的質量活性 (MAADT = 638 mA/mgPt),表示SnOx修飾可以改變Pt的電子結構,且在SnOx上的含氧物種 (oxygen-containing species, OCS) 透過排斥效應抑制了Pt的氧化。另一方面,亦發現PtSnOx觸媒的MAextra和MAtotal數值非常相近,進一步的證明了ADT期間ORR活性的貢獻主要來自於Pt-SnOx的界面。
第二部分透過精細結構的調控,探討PtAuSn殼/核三元NRs觸媒的ORR活性和穩定性。值得注意的是相比於合金奈米觸媒,殼/核分離的奈米結構觸媒通常表現出更高的活性和穩定性,因其具有較高的貴金屬利用率和電子修飾效應。在ORR的效能中, 以AuSnOx修飾的Pt觸媒在0.85 V下具有很高的活性 (MA = 1069 mA/mgPt)。此外,表面具有SnOx保護層的Au@SnOx修飾Pt觸媒,在10000圈ADT測試後仍表現出高度的穩定性 (MA = 251 mA/mgPt)。這部分的研究強調了精細結構的控制可以有效地提升觸媒的活性及穩定性。
第三部分探討有序和無序結構的Pt3Co觸媒和其修飾效應對ORR性能的影響。通過氫氣熱處理製備有序結構的Pt3Co觸媒,其表現出高的活性 (MA = 386 mA/mgPt),表明有序結構可以有效地提升ORR活性。接著透過PtSn表面修飾的有序Pt3Co觸媒,在有序結構和修飾效應的協同相互作用下,進一步增強了ORR活性 (MA = 504 mA/mgPt),在5000圈ADT測試後仍表現出高度的穩定度 (MA = 428 mA/mgPt)。這部分的研究提供了關於Pt3Co基觸媒結構設計的見解,以實現增強ORR性能的目的。
本篇研究主要探討,各種製備和改質方法,包括金屬氧化物修飾、殼核結構控制、有序結構的表面修飾以及SnOx的排斥作用,以合成各種具有高效能ORR活性和穩定性的Pt基觸媒。採用了上述的策略,所製備的PtSnOx、PtAuSn和Pt3CoSn觸媒皆優於Pt商用材,其活性提升了超過3倍以上,在未來將這些高效能Pt基觸媒運用於PEMFCs當中,預期將是極具潛力之陰極觸媒。
摘要(英) Fuel cells, converting chemical energy from fuels into electricity through an electrochemical reaction, are promising alternative power sources for transportation and portable applications due to their high power density, relatively low operation temperature, and zero emissions. Platinum (Pt) has been regarded as the state-of-the art catalysts materials in the fuel cell application due to its unique adsorption energy and high activity. However, the high oxophilicity of Pt demotes the activity of oxygen reduction reaction (ORR) at the cathode and oxidizes the active sites, resulting in a vulnerable durability and disadvantaging the commercial viability of the fuel cell technology. Therefore, the development of highly effective and stable Pt-based electrocatalysts is of importance for the proton exchange membrane fuel cells (PEMFCs). In this study, we have developed several Pt-based catalysts for PEMFCs to discuss the importance of fine structures control and surface modification to promote ORR performance.
This study is divided into three parts. In the first part, we have investigated the ORR performance of oxide decorated Pt nanorodss (NRs) catalysts and demonstrated that various metal oxides (MO, M = Ni, Rh, Pd, Ag, Ir, and Sn) influence the activity and stability of Pt NRs. Through mass activity (MAextra) calculation, our study has further revealed that the MAextra of various PtMOx have the trend: PtSnOx > PtAgOx > PtNiOx > PtPdOx > PtRhOx > PtIrOx. As a result, the optimized Pt-SnOx catalyst indeed demonstrates the best activity with enhanced mass activity (MAtotal = 860 mA/mgPt) and much improved stability after accelerated durability test (ADT)(MAADT = 638 mA/mgPt), suggesting that SnOx addition can modify Pt electronic properties and the oxygen-containing species (OCS) on SnOx can inhibit Pt oxidation by the repulsion effect. In addition, it is also found that MAextra of PtSnOx is very close to MAADT, further proving that the primary contribution of ORR activity during the ADT is from the Pt-SnOx interfaces.
In the second part, we have studied that the ORR activity and stability of PtAuSn core/shell ternary NRs catalysts, which are fine structure-dependent. Notably, core/shell segregated nanocatalysts exhibit improved activity and stability compared with alloyed nanocatalysts because of the high noble metal utilization and electronic modification effect. AuSnOx decorated Pt catalysts can reach high ORR mass activity of 1069 mA/mgPt at 0.85 V (IR-free). Moreover, the Au@SnOx decorated Pt catalysts with surface SnOx protective layer show high ORR stability after ADT of 10,000 cycles, which yet maintain high mass activity (251 mA/mgPt). This part highlights that controlling the fine structure of catalysts can effectively promote the activity and durability of the electrocatalysts for fuel cells.
In the third part, we have investigated the ORR performance of the ordered/disordered Pt3Co structure and the decoration effect. Herein, an ordered O-Pt3Co catalysts have been prepared via H2 heat treatment, showing high activity (MA = 386 mA/mgPt), suggesting that the ordered structure can effectively improve ORR activity. Subsequently, through PtSn decoration on ordered Pt3Co catalyst, the synergistic interaction between ordered structure and decoration effect further enhance the ORR activity (MA = 504 mA/mgPt) and maintain the activity after ADT (MA = 428 mA/mgPt). This part provides insights about structural design of Pt3Co-based catalyst to achieve enhanced ORR performance.
In this study, the highly effective Pt-based catalysts are prepared and promoted for ORR. We have used several methods of preparation and modification, including metal oxide decoration, core/shell structure control, surface decoration on the ordered structure, and repulsion effect of SnOx to synthesize various Pt-based catalysts with better ORR activity and stability. Taking the above strategies, all of theprepared PtSnOx, PtAuSn, and Pt3CoSn catalysts have ORR activity 3 times higher than commercial Pt/C catalyst. It is believed that these highly effective Pt-based catalysts are promising cathode catalysts in PEMFCs.
關鍵字(中) ★ Pt基觸媒
★ 氧氣還原反應
★ 金屬氧化物
★ 殼/核結構
★ 裝飾
★ 鉑鈷
★ 面心四方晶
★ 有序結構
★ 質量活性
★ 氧化錫
關鍵字(英) ★ Pt-based catalyst
★ oxygen reduction reaction (ORR)
★ metal oxide
★ core/shell structure
★ decoration
★ PtCo
★ face centered tetragonal (FCT)
★ ordered structure
★ mass activity
★ SnOx
論文目次 摘要 i
Abstract iv
致謝 vii
Table of Contents xi
List of Figures xiv
List of Tables xix
List of Acronyms and Symbols xx
Chapter 1 Introduction 1
1.1 Pt-based Catalysts for ORR 4
1.2 The Design of One-dimensional Structure for ORR 6
1.3 Metal Oxides Modifier 8
1.4 Catalysts through Au Addition 10
1.5 Ordered PtCo Catalysts 12
1.6 Motivation and Approach 14
Chapter 2 Experimental Section 16
2.1 Preparation of PtM Catalysts 16
2.2 Preparation of PtMOx Catalysts 16
2.3 Preparation of PtAuSn Ternary Catalysts with Different Structures 20
2.3.1 Preparation of PtAu and PtSn binary catalysts 20
2.3.2 Preparation of Pt-AuSnOx and Pt-Au@SnOx ternary catalysts 20
2.4 Preparation of PtCo and PtCoSn Catalysts with Different Structures 22
2.4.1 Preparation of the ordered Pt3Co catalyst 22
2.4.2 Modification of Pt3Co catalysts 22
2.5 Characterization of Catalysts 24
2.5.1 High resolution transmission electron microscope (HRTEM) 24
2.5.2 Aberration-corrected scanning transmission electron microscopy (AC-STEM) 24
2.5.3 Inductively coupled plasma‒optical emission spectroscopy (ICP-OES) 26
2.5.4 X-ray diffraction (XRD) 26
2.5.5 X-ray photoelectron spectroscopy (XPS) 26
2.5.6 X-ray absorption spectroscopy (XAS) 27
2.6 Electrochemical Measurements 30
2.6.1 ORR performance 30
2.6.2 CO-stripping 30
2.6.3 Cycle voltammetry (CV) 31
2.6.4 Accelerated durability test (ADT) 31
Chapter 3 Results and Discussion 32
3.1 ORR Performance of Pt-Metal Oxide Hybrid Catalysts 32
3.1.1 Structural analyses 32
3.1.2 Electrochemical characterizations 36
3.1.3 Summary 41
3.2 ORR Performance of PtAuSn Catalysts with a Beneficial Core/Shell Structure 44
3.2.1 Structural analyses 44
3.2.2 Electrochemical characterizations 49
3.2.3 Summary 56
3.3 ORR Performance of Pt3Co and Pt3CoSn Catalysts with Different Structures 59
3.3.1 Structural analyses 59
3.3.2 Electrochemical characterizations 67
3.3.3 Summary 72
Chapter 4 Conclusions 74
References 77
List of Publications 91
參考文獻 [1] Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 2019, 5 (6), 1486-1511.
[2] Liu, M.; Wang, L.; Zhao, K.; Shi, S.; Shao, Q.; Zhang, L.; Sun, X.; Zhao, Y.; Zhang, J., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12 (10), 2890-2923.
[3] Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. D., Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4 (1), 45-68.
[4] Stacy, J.; Regmi, Y. N.; Leonard, B.; Fan, M., The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sust. Energ. Rev. 2017, 69, 401-414.
[5] Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5 (1), 1-15.
[6] Meng, H.; Zeng, D.; Xie, F., Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts 2015, 5 (3), 1221-1274.
[7] Eslamibidgoli, M. J.; Huang, J.; Kadyk, T.; Malek, A.; Eikerling, M., How theory and simulation can drive fuel cell electrocatalysis. Nano Energy 2016, 29, 334-361.
[8] Colic, V.; Bandarenka, A. S., Pt alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems. ACS Catal. 2016, 6 (8), 5378-5385.
[9] Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth‐abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 2016, 55 (8), 2650-2676.
[10] Rößner, L.; Armbrüster, M., Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 2019, 9 (3), 2018-2062.
[11] Lu, Y.; Du, S.; Steinberger-Wilckens, R., One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—A review. Appl. Catal. B 2016, 199, 292-314.
[12] Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P., Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31 (31), 1805617.
[13] Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5 (5), 1808-1825.
[14] Matsumoto, K.; Hiyoshi, M.; Iijima, T.; Noguchi, H.; Uosaki, K., Investigation of the effects of Pt/Pd composition and PVP content on the activity of Pt/Pd core–shell catalysts. Electrochem commun 2020, 115, 106736.
[15] Zhang, C.; Shen, X.; Pan, Y.; Peng, Z., A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11 (3), 268-285.
[16] Chen, W.; Huang, J.; Wei, J.; Zhou, D.; Cai, J.; He, Z. D.; Chen, Y. X., Origins of high onset overpotential of oxygen reduction reaction at Pt-based electrocatalysts: A mini review. Electrochem commun 2018, 96, 71-76.
[17] Liu, M.; Zhao, Z.; Duan, X.; Huang, Y., Nanoscale structure design for high‐performance Pt‐based ORR catalysts. Adv. Mater. 2019, 31 (6), 1802234.
[18] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
[19] Wang, Y.; Wang, D.; Li, Y., A fundamental comprehension and recent progress in advanced Pt‐based ORR nanocatalysts. SmartMat 2021, 2 (1), 56-75.
[20] Sohn, Y.; Jung, N.; Lee, M. J.; Lee, S.; Nahm, K. S.; Kim, P.; Yoo, S. J., Preparation of porous PtAuCu@ Pt core-shell catalyst for application to oxygen reduction. J. Ind. Eng. Chem. 2019, 79, 210-216.
[21] Sravani, B.; Raghavendra, P.; Chandrasekhar, Y.; Reddy, Y. V. M.; Sivasubramanian, R.; Venkateswarlu, K.; Madhavi, G.; Sarma, L. S., Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 2020, 45 (13), 7680-7690.
[22] Yılmaz, M. S.; Kaplan, B. Y.; Gürsel, S. A.; Metin, Ö., Binary CuPt alloy nanoparticles assembled on reduced graphene oxide-carbon black hybrid as efficient and cost-effective electrocatalyst for PEMFC. Int. J. Hydrog. Energy 2019, 44 (27), 14184-14192.
[23] Lin, R.; Che, L.; Shen, D.; Cai, X., High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis. Electrochim. Acta 2020, 330, 135251.
[24] Park, H. U.; Park, A. H.; Shi, W.; Park, G. G.; Kwon, Y. U., Ternary core-shell PdM@ Pt (M= Mn and Fe) nanoparticle electrocatalysts with enhanced ORR catalytic properties. Ultrason Sonochem 2019, 58, 104673.
[25] Chen, X.; Wang, H.; Wan, H.; Wu, T.; Shu, D.; Shen, L.; Wang, Y.; Ruterana, P.; Lund, P. D.; Wang, H., Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy 2018, 54, 280-287.
[26] Liu, J.; Yin, J.; Feng, B.; Li, F.; Wang, F., One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction. Appl. Surf. Sci. 2019, 473, 318-325.
[27] Kim, Y.; Lee, D.; Kwon, Y.; Kim, T. W.; Kim, K.; Kim, H. J., Enhanced electrochemical oxygen reduction reaction performance with Pt nanocluster catalysts supported on microporous graphene-like 3D carbon. J. Electroanal. Chem. 2019, 838, 89-93.
[28] Shin, S.; Kim, J.; Park, S.; Kim, H. E.; Sung, Y. E.; Lee, H., Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. 2019, 55 (45), 6389-6392.
[29] Yan, H.; Lin, Y.; Wu, H.; Zhang, W.; Sun, Z.; Cheng, H.; Liu, W.; Wang, C.; Li, J.; Huang, X., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8 (1), 1-11.
[30] Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J.; Herrmann, A. K.; Geiger, D.; Zheng, Z.; Kaskel, S.; Gaponik, N., Bimetallic Aerogels: High‐Performance Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52 (37), 9849-9852.
[31] Fu, S.; Zhu, C.; Song, J.; Engelhard, M. H.; Xia, H.; Du, D.; Lin, Y., Kinetically controlled synthesis of Pt-based one-dimensional hierarchically porous nanostructures with large mesopores as highly efficient ORR catalysts. ACS Appl. Mater. Interfaces 2016, 8 (51), 35213-35218.
[32] Kong, F.; Banis, M. N.; Du, L.; Zhang, L.; Zhang, L.; Li, J.; Doyle Davis, K.; Liang, J.; Liu, Q.; Yang, X., Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. J. Mater. Chem. A 2019, 7 (43), 24830-24836.
[33] Escudero Escribano, M.; Jensen, K. D.; Jensen, A. W., Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr. Opin. Electrochem. 2018, 8, 135-146.
[34] Ruan, L.; Zhu, E.; Chen, Y.; Lin, Z.; Huang, X.; Duan, X.; Huang, Y., Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. Angew. Chem. 2013, 125 (48), 12809-12813.
[35] Chen, T. W.; Kang, J. X.; Zhang, D. F.; Guo, L., Ultralong PtNi alloy nanowires enabled by the coordination effect with superior ORR durability. RSC Adv. 2016, 6 (75), 71501-71506.
[36] Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354 (6318), 1414-1419.
[37] Guo, Y. Z.; Yan, S. Y.; Liu, C. W.; Chou, T. F.; Wang, J. H.; Wang, K. W., The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects. J. Mater. Chem. A 2017, 5 (27), 14355-14364.
[38] Yan, S. Y.; Liu, C. W.; Huang, T. H.; Guo, Y. Z.; Lee, S. W.; Wang, J. H.; Wang, K. W., Composition effect of oxygen reduction reaction on PtSn nanorods: An experimental and computational study. Int. J. Hydrog. Energy 2018, 43 (31), 14427-14438.
[39] Yang, D.; Yan, Z.; Li, B.; Higgins, D. C.; Wang, J.; Lv, H.; Chen, Z.; Zhang, C., Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrog. Energy 2016, 41 (41), 18592-18601.
[40] Zhang, X.; Wang, S.; Wu, C.; Li, H.; Cao, Y.; Li, S.; Xia, H., Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. J. Mater. Chem. A 2020, 8 (45), 23906-23918.
[41] Li, B.; Higgins, D. C.; Xiao, Q.; Yang, D.; Zhng, C.; Cai, M.; Chen, Z.; Ma, J., The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl. Catal. B 2015, 162, 133-140.
[42] Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J., Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111 (3), 1434-1443.
[43] Jeon, T. Y.; Yoo, S. J.; Cho, Y. H.; Lee, K. S.; Kang, S. H.; Sung, Y. E., Influence of oxide on the oxygen reduction reaction of carbon-supported Pt− Ni alloy nanoparticles. J. Phys. Chem. C 2009, 113 (45), 19732-19739.
[44] Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z., Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29 (9), 1604607.
[45] Cheng, N.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R.; Ye, S.; Knights, S.; Sun, X., Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area‐selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27 (2), 277-281.
[46] Elezović, N. R.; Babić, B. M.; Radmilović, V. R.; Gojković, S. L.; Krstajić, N. V.; Vračar, L. M., Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J. Power Sources 2008, 175 (1), 250-255.
[47] Hornberger, E.; Bergmann, A.; Schmies, H.; Kühl, S.; Wang, G.; Drnec, J.; Sandbeck, D. J.; Ramani, V.; Cherevko, S.; Mayrhofer, K. J., In Situ Stability Studies of Platinum Nanoparticles Supported on Ruthenium− Titanium Mixed Oxide (RTO) for Fuel Cell Cathodes. ACS Catal. 2018, 8 (10), 9675-9683.
[48] Zhang, J.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R., Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127 (36), 12480-12481.
[49] Yan, S. Y.; Huang, Y. R.; Yang, C. Y.; Liu, C. W.; Wang, J. H.; Wang, K. W., Enhanced activity of ethanol oxidation reaction on PtM (M= Au, Ag and Sn): The importance of oxophilicity and surface oxygen containing species. Electrochim. Acta 2018, 259, 733-741.
[50] Beyhan, S.; Şahin, N. E.; Pronier, S.; Léger, J. M.; Kadırgan, F., Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study. Electrochim. Acta 2015, 151, 565-573.
[51] Parrondo, J.; Mijangos, F.; Rambabu, B., Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J. Power Sources 2010, 195 (13), 3977-3983.
[52] Dai, S.; Huang, T. H.; Yan, X.; Yang, C. Y.; Chen, T. Y.; Wang, J. H.; Pan, X.; Wang, K. W., Promotion of ternary Pt–Sn–Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals. ACS Energy Lett. 2018, 3 (10), 2550-2557.
[53] Huang, S. Y.; Ganesan, P.; Popov, B. N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl. Catal. B 2011, 102 (1-2), 71-77.
[54] Ho, V. T. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J., Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133 (30), 11716-11724.
[55] Song, P.; Mei, L. P.; Wang, A. J.; Fang, K. M.; Feng, J. J., One-pot surfactant-free synthesis of porous PtAu alloyed nanoflowers with enhanced electrocatalytic activity for ethanol oxidation and oxygen reduction reactions. Int. J. Hydrog. Energy 2016, 41 (3), 1645-1653.
[56] Li, J.; Jilani, S. Z.; Lin, H.; Liu, X.; Wei, K.; Jia, Y.; Zhang, P.; Chi, M.; Tong, Y. J.; Xi, Z., Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electro‐oxidation of Liquid Fuels. Angew. Chem. 2019, 131 (33), 11651-11657.
[57] Dai, S.; Huang, T. H.; Chien, P. C.; Lin, C. A.; Liu, C. W.; Lee, S. W.; Wang, J. H.; Wang, K. W.; Pan, X., Optimization of Pt–Oxygen-Containing Species Anodes for Ethanol Oxidation Reaction: High Performance of Pt-AuSnOx Electrocatalyst. J. Phys. Chem. Lett. 2020, 11 (8), 2846-2853.
[58] Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y., N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 2018, 334, 2638-2646.
[59] Pajić, M. K.; Stevanović, S.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Zabinski, P.; Elezović, N. R.; Radmilović, V. R.; Gojković, S. L.; Jovanović, V. M., Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B 2019, 243, 585-593.
[60] Zhao, Y.; Zhang, W.; Yin, H.; He, J.; Ding, Y., Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim. Acta 2018, 274, 9-15.
[61] Liu, C. W.; Wei, Y. C.; Liu, C. C.; Wang, K. W., Pt–Au core/shell nanorods: preparation and applications as electrocatalysts for fuel cells. J. Mater. Chem. 2012, 22 (11), 4641-4644.
[62] Kodama, K.; Jinnouchi, R.; Takahashi, N.; Murata, H.; Morimoto, Y., Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 2016, 138 (12), 4194-4200.
[63] Jinnouchi, R.; Suzuki, K. K. T.; Morimoto, Y., DFT calculations on electro-oxidations and dissolutions of Pt and Pt–Au nanoparticles. Catalysis Today 2016, 262, 100-109.
[64] Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315 (5809), 220-222.
[65] Liang, Y. T.; Liu, C. W.; Chen, H. S.; Lin, T. J.; Yang, C. Y.; Chen, T. L.; Lin, C. H.; Tu, M. C.; Wang, K. W., Enhancement of oxygen reduction reaction performance of Pt nanomaterials by 1-dimensional structure and Au alloying. RSC Adv. 2015, 5 (49), 39205-39208.
[66] Liang, Y. T.; Lin, S. P.; Liu, C. W.; Chung, S. R.; Chen, T. Y.; Wang, J. H.; Wang, K. W., The performance and stability of the oxygen reduction reaction on Pt–M (M= Pd, Ag and Au) nanorods: an experimental and computational study. Chem. Commun. 2015, 51 (30), 6605-6608.
[67] Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P., High-performance Pt–Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020, 20 (3), 1974-1979.
[68] Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J.; Lou, X. W. D., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366 (6467), 850-856.
[69] Wang, Q.; Tang, H.; Wang, M.; Guo, L.; Chen, S.; Wei, Z., Precisely tuning the electronic structure of a structurally ordered PtCoFe alloy via a dual-component promoter strategy for oxygen reduction. Chem. Commun. 2021, 57 (33), 4047-4050.
[70] Kaito, T.; Tanaka, H.; Mitsumoto, H.; Sugawara, S.; Shinohara, K.; Ariga, H.; Uehara, H.; Takakusagi, S.; Asakura, K., In situ X-ray absorption fine structure analysis of PtCo, PtCu, and PtNi alloy electrocatalysts: The correlation of enhanced oxygen reduction reaction activity and structure. J. Phys. Chem. C 2016, 120 (21), 11519-11527.
[71] Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D., Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8 (4), 3237-3256.
[72] Lee, J. D.; Jishkariani, D.; Zhao, Y.; Najmr, S.; Rosen, D.; Kikkawa, J. M.; Stach, E. A.; Murray, C. B., Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS Appl. Mater. Interfaces 2019, 11 (30), 26789-26797.
[73] Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G., Tungsten‐Doped L10‐PtCo Ultrasmall Nanoparticles as a High‐Performance Fuel Cell Cathode. Angew. Chem. 2019, 131 (43), 15617-15623.
[74] Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D., Synergistic Bimetallic Metallic Organic Framework-Derived Pt–Co Oxygen Reduction Electrocatalysts. ACS Nano 2020, 14 (10), 13069-13080.
[75] Monshi, A.; Foroughi, M. R.; Monshi, M. R., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2 (3), 154-160.
[76] Sousa, R.; Colmati, F.; Ciapina, E. G.; Gonzalez, E. R., An analysis of X-ray absorption spectra in the XANES region of platinum-based electrocatalysts for low-temperature fuel cells. J. Solid State Electrochem. 2007, 11 (11), 1549-1557.
[77] Gojković, S. L.; Zečević, S.; Savinell, R., O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. J. Electrochem. Soc. 1998, 145 (11), 3713.
[78] Zhang, N.; Zhang, S.; Du, C.; Wang, Z.; Shao, Y.; Kong, F.; Lin, Y.; Yin, G., Pt/Tin oxide/carbon nanocomposites as promising oxygen reduction electrocatalyst with improved stability and activity. Electrochim. Acta 2014, 117, 413-419.
[79] Hu, Q.; Zhan, W.; Guo, Y.; Luo, L.; Zhang, R.; Chen, D.; Zhou, X., Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217-223.
[80] Chaisubanan, N.; Maniwan, W.; Hunsom, M., Effect of heat-treatment on the performance of PtM/C (M= Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell. Energy 2017, 127, 454-461.
[81] Zhang, C.; Zhang, R.; Li, X.; Chen, W., PtNi nanocrystals supported on hollow carbon spheres: Enhancing the electrocatalytic performance through high-temperature annealing and electrochemical CO stripping treatments. ACS Appl. Mater. Interfaces 2017, 9 (35), 29623-29632.
[82] Leteba, G. M.; Mitchell, D. R.; Levecque, P. B.; Van Steen, E.; Lang, C. I., Topographical and compositional engineering of core–shell Ni@Pt ORR electro-catalysts. RSC Adv. 2020, 10 (49), 29268-29277.
[83] Wang, L.; Gao, W.; Liu, Z.; Zeng, Z.; Liu, Y.; Giroux, M.; Chi, M.; Wang, G.; Greeley, J.; Pan, X., Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability. ACS Catal. 2018, 8 (1), 35-42.
[84] Wang, J.; Yin, G.; Liu, H.; Li, R.; Flemming, R. L.; Sun, X., Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. J. Power Sources 2009, 194 (2), 668-673.
[85] Kong, F.; Du, C.; Ye, J.; Chen, G.; Du, L.; Yin, G., Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt–Au catalyst. ACS Catal. 2017, 7 (11), 7923-7929.
[86] Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563 (1), 81-89.
[87] Herranz, T.; Ibáñez, M.; Gómez de la Fuente, J. L.; Pérez‐Alonso, F. J.; Peña, M. A.; Cabot, A.; Rojas, S., In situ study of ethanol electrooxidation on monodispersed Pt3Sn nanoparticles. ChemElectroChem 2014, 1 (5), 885-895.
[88] Rizo, R.; Lázaro, M. J.; Pastor, E.; Koper, M. T., Ethanol Oxidation on Sn‐modified Pt Single‐Crystal Electrodes: New Mechanistic Insights from On‐line Electrochemical Mass Spectrometry. ChemElectroChem 2016, 3 (12), 2196-2201.
[89] Lin, Z. J.; Chou, T. F.; Liu, C. W.; Huang, P. H.; Guo, Y. Z.; Wang, J. H.; Wang, K. W., The structure-dependent enhancement of the oxygen reduction reaction performance of Co-based low Pt catalysts through Au addition. J. Mater. Chem. A 2016, 4 (28), 11023-11029.
[90] Yin, S.; Xie, Z.; Deng, X.; Xuan, W.; Duan, Y.; Zhang, S.; Liang, Y., Simple synthesis of ordered platinum-gold nanoparticles with the enhanced catalytic activity for oxygen reduction reaction. J. Electroanal. Chem. 2020, 856, 113707.
[91] Deng, X.; Yin, S.; Wu, X.; Sun, M.; Xie, Z.; Huang, Q., Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2018, 283, 987-996.
[92] Lim, J.-E.; Lee, U. J.; Ahn, S. H.; Cho, E.; Kim, H. J.; Jang, J. H.; Son, H.; Kim, S. K., Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid. Appl. Catal. B 2015, 165, 495-502.
[93] Lee, K. S.; Park, H. Y.; Ham, H. C.; Yoo, S. J.; Kim, H. J.; Cho, E.; Manthiram, A.; Jang, J. H., Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction. J. Phys. Chem. C 2013, 117 (18), 9164-9170.
[94] Park, H. Y.; Jeon, T. Y.; Jang, J. H.; Yoo, S. J.; Choi, K. H.; Jung, N.; Chung, Y. H.; Ahn, M.; Cho, Y. H.; Lee, K. S., Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment. Appl. Catal. B 2013, 129, 375-381.
[95] Jung, W. S.; Popov, B. N., Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells. ACS Sustainable Chem. Eng. 2017, 5 (11), 9809-9817.
[96] Jung, W. S.; Popov, B. N., New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. ACS Appl. Mater. Interfaces 2017, 9 (28), 23679-23686.
[97] Jung, W. S.; Lee, W. H.; Oh, H. S.; Popov, B. N., Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J. Mater. Chem. A 2020, 8 (38), 19833-19842.
[98] Kang, Y. S.; Choi, D.; Park, H. Y.; Yoo, S. J., Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction. J. Ind. Eng. Chem. 2019, 78, 448-454.
[99] Jung, N.; Chung, Y. H.; Chung, D. Y.; Choi, K. H.; Park, H. Y.; Ryu, J.; Lee, S. Y.; Kim, M.; Sung, Y. E.; Yoo, S. J., Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions. Phys. Chem. Chem. Phys. 2013, 15 (40), 17079-17083.
[100] Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G., Ordered Pt3Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction. Nano Lett. 2018, 18 (7), 4163-4171.
[101] Bhalothia, D.; Fan, Y. J.; Huang, T. H.; Lin, Z. J.; Yang, Y. T.; Wang, K. W.; Chen, T. Y., Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts. J. Phys. Chem. C 2019, 123 (31), 19013-19021.
[102] Nagasawa, K.; Takao, S.; Nagamatsu, S. i.; Samjeské, G.; Sekizawa, O.; Kaneko, T.; Higashi, K.; Yamamoto, T.; Uruga, T.; Iwasawa, Y., Surface-regulated nano-SnO2/Pt3Co/C cathode catalysts for polymer electrolyte fuel cells fabricated by a selective electrochemical Sn deposition method. J. Am. Chem. Soc. 2015, 137 (40), 12856-12864.
[103] Morris, D. J.; Zhang, P., In situ X‐ray Absorption Spectroscopy of Platinum Electrocatalysts. Chemistry‐Methods 2021, 1 (3), 162-172.
[104] Arán Ais, R. M.; Solla Gullón, J.; Herrero, E.; Feliu, J. M., On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. J. Electroanal. Chem. 2018, 808, 433-438.
[105] Liu, M.; Hu, A.; Ma, Y.; Wang, G.; Zou, L.; Chen, X.; Yang, H., Nitrogen-doped Pt3Co intermetallic compound nanoparticles: A durable oxygen reduction electrocatalyst. J. Electroanal. Chem. 2020, 871, 114267.
[106] Cai, Y.; Gao, P.; Wang, F.; Zhu, H., Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction. Electrochim. Acta 2017, 245, 924-933.
[107] Yang, W.; Zou, L.; Huang, Q.; Zou, Z.; Hu, Y.; Yang, H., Lattice Contracted Ordered Intermetallic Core-Shell PtCo@Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction. J. Electrochem. Soc. 2017, 164 (6), H331.
[108] Arumugam, B.; Kakade, B. A.; Tamaki, T.; Arao, M.; Imai, H.; Yamaguchi, T., Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Adv. 2014, 4 (52), 27510-27517.
[109] Tamaki, T.; Minagawa, A.; Arumugam, B.; Kakade, B. A.; Yamaguchi, T., Highly active and durable chemically ordered Pt–Fe–Co intermetallics as cathode catalysts of membrane–electrode assemblies in polymer electrolyte fuel cells. J. Power Sources 2014, 271, 346-353.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2021-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明