參考文獻 |
[1] Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 2019, 5 (6), 1486-1511.
[2] Liu, M.; Wang, L.; Zhao, K.; Shi, S.; Shao, Q.; Zhang, L.; Sun, X.; Zhao, Y.; Zhang, J., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12 (10), 2890-2923.
[3] Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. D., Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4 (1), 45-68.
[4] Stacy, J.; Regmi, Y. N.; Leonard, B.; Fan, M., The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sust. Energ. Rev. 2017, 69, 401-414.
[5] Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5 (1), 1-15.
[6] Meng, H.; Zeng, D.; Xie, F., Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts 2015, 5 (3), 1221-1274.
[7] Eslamibidgoli, M. J.; Huang, J.; Kadyk, T.; Malek, A.; Eikerling, M., How theory and simulation can drive fuel cell electrocatalysis. Nano Energy 2016, 29, 334-361.
[8] Colic, V.; Bandarenka, A. S., Pt alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems. ACS Catal. 2016, 6 (8), 5378-5385.
[9] Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth‐abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 2016, 55 (8), 2650-2676.
[10] Rößner, L.; Armbrüster, M., Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 2019, 9 (3), 2018-2062.
[11] Lu, Y.; Du, S.; Steinberger-Wilckens, R., One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—A review. Appl. Catal. B 2016, 199, 292-314.
[12] Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P., Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31 (31), 1805617.
[13] Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5 (5), 1808-1825.
[14] Matsumoto, K.; Hiyoshi, M.; Iijima, T.; Noguchi, H.; Uosaki, K., Investigation of the effects of Pt/Pd composition and PVP content on the activity of Pt/Pd core–shell catalysts. Electrochem commun 2020, 115, 106736.
[15] Zhang, C.; Shen, X.; Pan, Y.; Peng, Z., A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11 (3), 268-285.
[16] Chen, W.; Huang, J.; Wei, J.; Zhou, D.; Cai, J.; He, Z. D.; Chen, Y. X., Origins of high onset overpotential of oxygen reduction reaction at Pt-based electrocatalysts: A mini review. Electrochem commun 2018, 96, 71-76.
[17] Liu, M.; Zhao, Z.; Duan, X.; Huang, Y., Nanoscale structure design for high‐performance Pt‐based ORR catalysts. Adv. Mater. 2019, 31 (6), 1802234.
[18] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
[19] Wang, Y.; Wang, D.; Li, Y., A fundamental comprehension and recent progress in advanced Pt‐based ORR nanocatalysts. SmartMat 2021, 2 (1), 56-75.
[20] Sohn, Y.; Jung, N.; Lee, M. J.; Lee, S.; Nahm, K. S.; Kim, P.; Yoo, S. J., Preparation of porous PtAuCu@ Pt core-shell catalyst for application to oxygen reduction. J. Ind. Eng. Chem. 2019, 79, 210-216.
[21] Sravani, B.; Raghavendra, P.; Chandrasekhar, Y.; Reddy, Y. V. M.; Sivasubramanian, R.; Venkateswarlu, K.; Madhavi, G.; Sarma, L. S., Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. Int. J. Hydrog. Energy 2020, 45 (13), 7680-7690.
[22] Yılmaz, M. S.; Kaplan, B. Y.; Gürsel, S. A.; Metin, Ö., Binary CuPt alloy nanoparticles assembled on reduced graphene oxide-carbon black hybrid as efficient and cost-effective electrocatalyst for PEMFC. Int. J. Hydrog. Energy 2019, 44 (27), 14184-14192.
[23] Lin, R.; Che, L.; Shen, D.; Cai, X., High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis. Electrochim. Acta 2020, 330, 135251.
[24] Park, H. U.; Park, A. H.; Shi, W.; Park, G. G.; Kwon, Y. U., Ternary core-shell PdM@ Pt (M= Mn and Fe) nanoparticle electrocatalysts with enhanced ORR catalytic properties. Ultrason Sonochem 2019, 58, 104673.
[25] Chen, X.; Wang, H.; Wan, H.; Wu, T.; Shu, D.; Shen, L.; Wang, Y.; Ruterana, P.; Lund, P. D.; Wang, H., Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy 2018, 54, 280-287.
[26] Liu, J.; Yin, J.; Feng, B.; Li, F.; Wang, F., One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction. Appl. Surf. Sci. 2019, 473, 318-325.
[27] Kim, Y.; Lee, D.; Kwon, Y.; Kim, T. W.; Kim, K.; Kim, H. J., Enhanced electrochemical oxygen reduction reaction performance with Pt nanocluster catalysts supported on microporous graphene-like 3D carbon. J. Electroanal. Chem. 2019, 838, 89-93.
[28] Shin, S.; Kim, J.; Park, S.; Kim, H. E.; Sung, Y. E.; Lee, H., Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. 2019, 55 (45), 6389-6392.
[29] Yan, H.; Lin, Y.; Wu, H.; Zhang, W.; Sun, Z.; Cheng, H.; Liu, W.; Wang, C.; Li, J.; Huang, X., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8 (1), 1-11.
[30] Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J.; Herrmann, A. K.; Geiger, D.; Zheng, Z.; Kaskel, S.; Gaponik, N., Bimetallic Aerogels: High‐Performance Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52 (37), 9849-9852.
[31] Fu, S.; Zhu, C.; Song, J.; Engelhard, M. H.; Xia, H.; Du, D.; Lin, Y., Kinetically controlled synthesis of Pt-based one-dimensional hierarchically porous nanostructures with large mesopores as highly efficient ORR catalysts. ACS Appl. Mater. Interfaces 2016, 8 (51), 35213-35218.
[32] Kong, F.; Banis, M. N.; Du, L.; Zhang, L.; Zhang, L.; Li, J.; Doyle Davis, K.; Liang, J.; Liu, Q.; Yang, X., Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. J. Mater. Chem. A 2019, 7 (43), 24830-24836.
[33] Escudero Escribano, M.; Jensen, K. D.; Jensen, A. W., Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr. Opin. Electrochem. 2018, 8, 135-146.
[34] Ruan, L.; Zhu, E.; Chen, Y.; Lin, Z.; Huang, X.; Duan, X.; Huang, Y., Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. Angew. Chem. 2013, 125 (48), 12809-12813.
[35] Chen, T. W.; Kang, J. X.; Zhang, D. F.; Guo, L., Ultralong PtNi alloy nanowires enabled by the coordination effect with superior ORR durability. RSC Adv. 2016, 6 (75), 71501-71506.
[36] Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354 (6318), 1414-1419.
[37] Guo, Y. Z.; Yan, S. Y.; Liu, C. W.; Chou, T. F.; Wang, J. H.; Wang, K. W., The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects. J. Mater. Chem. A 2017, 5 (27), 14355-14364.
[38] Yan, S. Y.; Liu, C. W.; Huang, T. H.; Guo, Y. Z.; Lee, S. W.; Wang, J. H.; Wang, K. W., Composition effect of oxygen reduction reaction on PtSn nanorods: An experimental and computational study. Int. J. Hydrog. Energy 2018, 43 (31), 14427-14438.
[39] Yang, D.; Yan, Z.; Li, B.; Higgins, D. C.; Wang, J.; Lv, H.; Chen, Z.; Zhang, C., Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrog. Energy 2016, 41 (41), 18592-18601.
[40] Zhang, X.; Wang, S.; Wu, C.; Li, H.; Cao, Y.; Li, S.; Xia, H., Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. J. Mater. Chem. A 2020, 8 (45), 23906-23918.
[41] Li, B.; Higgins, D. C.; Xiao, Q.; Yang, D.; Zhng, C.; Cai, M.; Chen, Z.; Ma, J., The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl. Catal. B 2015, 162, 133-140.
[42] Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J., Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111 (3), 1434-1443.
[43] Jeon, T. Y.; Yoo, S. J.; Cho, Y. H.; Lee, K. S.; Kang, S. H.; Sung, Y. E., Influence of oxide on the oxygen reduction reaction of carbon-supported Pt− Ni alloy nanoparticles. J. Phys. Chem. C 2009, 113 (45), 19732-19739.
[44] Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z., Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29 (9), 1604607.
[45] Cheng, N.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R.; Ye, S.; Knights, S.; Sun, X., Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area‐selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27 (2), 277-281.
[46] Elezović, N. R.; Babić, B. M.; Radmilović, V. R.; Gojković, S. L.; Krstajić, N. V.; Vračar, L. M., Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J. Power Sources 2008, 175 (1), 250-255.
[47] Hornberger, E.; Bergmann, A.; Schmies, H.; Kühl, S.; Wang, G.; Drnec, J.; Sandbeck, D. J.; Ramani, V.; Cherevko, S.; Mayrhofer, K. J., In Situ Stability Studies of Platinum Nanoparticles Supported on Ruthenium− Titanium Mixed Oxide (RTO) for Fuel Cell Cathodes. ACS Catal. 2018, 8 (10), 9675-9683.
[48] Zhang, J.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R., Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127 (36), 12480-12481.
[49] Yan, S. Y.; Huang, Y. R.; Yang, C. Y.; Liu, C. W.; Wang, J. H.; Wang, K. W., Enhanced activity of ethanol oxidation reaction on PtM (M= Au, Ag and Sn): The importance of oxophilicity and surface oxygen containing species. Electrochim. Acta 2018, 259, 733-741.
[50] Beyhan, S.; Şahin, N. E.; Pronier, S.; Léger, J. M.; Kadırgan, F., Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study. Electrochim. Acta 2015, 151, 565-573.
[51] Parrondo, J.; Mijangos, F.; Rambabu, B., Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J. Power Sources 2010, 195 (13), 3977-3983.
[52] Dai, S.; Huang, T. H.; Yan, X.; Yang, C. Y.; Chen, T. Y.; Wang, J. H.; Pan, X.; Wang, K. W., Promotion of ternary Pt–Sn–Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals. ACS Energy Lett. 2018, 3 (10), 2550-2557.
[53] Huang, S. Y.; Ganesan, P.; Popov, B. N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl. Catal. B 2011, 102 (1-2), 71-77.
[54] Ho, V. T. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J., Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133 (30), 11716-11724.
[55] Song, P.; Mei, L. P.; Wang, A. J.; Fang, K. M.; Feng, J. J., One-pot surfactant-free synthesis of porous PtAu alloyed nanoflowers with enhanced electrocatalytic activity for ethanol oxidation and oxygen reduction reactions. Int. J. Hydrog. Energy 2016, 41 (3), 1645-1653.
[56] Li, J.; Jilani, S. Z.; Lin, H.; Liu, X.; Wei, K.; Jia, Y.; Zhang, P.; Chi, M.; Tong, Y. J.; Xi, Z., Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electro‐oxidation of Liquid Fuels. Angew. Chem. 2019, 131 (33), 11651-11657.
[57] Dai, S.; Huang, T. H.; Chien, P. C.; Lin, C. A.; Liu, C. W.; Lee, S. W.; Wang, J. H.; Wang, K. W.; Pan, X., Optimization of Pt–Oxygen-Containing Species Anodes for Ethanol Oxidation Reaction: High Performance of Pt-AuSnOx Electrocatalyst. J. Phys. Chem. Lett. 2020, 11 (8), 2846-2853.
[58] Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y., N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 2018, 334, 2638-2646.
[59] Pajić, M. K.; Stevanović, S.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Zabinski, P.; Elezović, N. R.; Radmilović, V. R.; Gojković, S. L.; Jovanović, V. M., Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B 2019, 243, 585-593.
[60] Zhao, Y.; Zhang, W.; Yin, H.; He, J.; Ding, Y., Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim. Acta 2018, 274, 9-15.
[61] Liu, C. W.; Wei, Y. C.; Liu, C. C.; Wang, K. W., Pt–Au core/shell nanorods: preparation and applications as electrocatalysts for fuel cells. J. Mater. Chem. 2012, 22 (11), 4641-4644.
[62] Kodama, K.; Jinnouchi, R.; Takahashi, N.; Murata, H.; Morimoto, Y., Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 2016, 138 (12), 4194-4200.
[63] Jinnouchi, R.; Suzuki, K. K. T.; Morimoto, Y., DFT calculations on electro-oxidations and dissolutions of Pt and Pt–Au nanoparticles. Catalysis Today 2016, 262, 100-109.
[64] Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315 (5809), 220-222.
[65] Liang, Y. T.; Liu, C. W.; Chen, H. S.; Lin, T. J.; Yang, C. Y.; Chen, T. L.; Lin, C. H.; Tu, M. C.; Wang, K. W., Enhancement of oxygen reduction reaction performance of Pt nanomaterials by 1-dimensional structure and Au alloying. RSC Adv. 2015, 5 (49), 39205-39208.
[66] Liang, Y. T.; Lin, S. P.; Liu, C. W.; Chung, S. R.; Chen, T. Y.; Wang, J. H.; Wang, K. W., The performance and stability of the oxygen reduction reaction on Pt–M (M= Pd, Ag and Au) nanorods: an experimental and computational study. Chem. Commun. 2015, 51 (30), 6605-6608.
[67] Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P., High-performance Pt–Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020, 20 (3), 1974-1979.
[68] Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J.; Lou, X. W. D., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366 (6467), 850-856.
[69] Wang, Q.; Tang, H.; Wang, M.; Guo, L.; Chen, S.; Wei, Z., Precisely tuning the electronic structure of a structurally ordered PtCoFe alloy via a dual-component promoter strategy for oxygen reduction. Chem. Commun. 2021, 57 (33), 4047-4050.
[70] Kaito, T.; Tanaka, H.; Mitsumoto, H.; Sugawara, S.; Shinohara, K.; Ariga, H.; Uehara, H.; Takakusagi, S.; Asakura, K., In situ X-ray absorption fine structure analysis of PtCo, PtCu, and PtNi alloy electrocatalysts: The correlation of enhanced oxygen reduction reaction activity and structure. J. Phys. Chem. C 2016, 120 (21), 11519-11527.
[71] Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D., Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8 (4), 3237-3256.
[72] Lee, J. D.; Jishkariani, D.; Zhao, Y.; Najmr, S.; Rosen, D.; Kikkawa, J. M.; Stach, E. A.; Murray, C. B., Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS Appl. Mater. Interfaces 2019, 11 (30), 26789-26797.
[73] Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G., Tungsten‐Doped L10‐PtCo Ultrasmall Nanoparticles as a High‐Performance Fuel Cell Cathode. Angew. Chem. 2019, 131 (43), 15617-15623.
[74] Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D., Synergistic Bimetallic Metallic Organic Framework-Derived Pt–Co Oxygen Reduction Electrocatalysts. ACS Nano 2020, 14 (10), 13069-13080.
[75] Monshi, A.; Foroughi, M. R.; Monshi, M. R., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2 (3), 154-160.
[76] Sousa, R.; Colmati, F.; Ciapina, E. G.; Gonzalez, E. R., An analysis of X-ray absorption spectra in the XANES region of platinum-based electrocatalysts for low-temperature fuel cells. J. Solid State Electrochem. 2007, 11 (11), 1549-1557.
[77] Gojković, S. L.; Zečević, S.; Savinell, R., O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. J. Electrochem. Soc. 1998, 145 (11), 3713.
[78] Zhang, N.; Zhang, S.; Du, C.; Wang, Z.; Shao, Y.; Kong, F.; Lin, Y.; Yin, G., Pt/Tin oxide/carbon nanocomposites as promising oxygen reduction electrocatalyst with improved stability and activity. Electrochim. Acta 2014, 117, 413-419.
[79] Hu, Q.; Zhan, W.; Guo, Y.; Luo, L.; Zhang, R.; Chen, D.; Zhou, X., Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217-223.
[80] Chaisubanan, N.; Maniwan, W.; Hunsom, M., Effect of heat-treatment on the performance of PtM/C (M= Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell. Energy 2017, 127, 454-461.
[81] Zhang, C.; Zhang, R.; Li, X.; Chen, W., PtNi nanocrystals supported on hollow carbon spheres: Enhancing the electrocatalytic performance through high-temperature annealing and electrochemical CO stripping treatments. ACS Appl. Mater. Interfaces 2017, 9 (35), 29623-29632.
[82] Leteba, G. M.; Mitchell, D. R.; Levecque, P. B.; Van Steen, E.; Lang, C. I., Topographical and compositional engineering of core–shell Ni@Pt ORR electro-catalysts. RSC Adv. 2020, 10 (49), 29268-29277.
[83] Wang, L.; Gao, W.; Liu, Z.; Zeng, Z.; Liu, Y.; Giroux, M.; Chi, M.; Wang, G.; Greeley, J.; Pan, X., Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability. ACS Catal. 2018, 8 (1), 35-42.
[84] Wang, J.; Yin, G.; Liu, H.; Li, R.; Flemming, R. L.; Sun, X., Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. J. Power Sources 2009, 194 (2), 668-673.
[85] Kong, F.; Du, C.; Ye, J.; Chen, G.; Du, L.; Yin, G., Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt–Au catalyst. ACS Catal. 2017, 7 (11), 7923-7929.
[86] Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563 (1), 81-89.
[87] Herranz, T.; Ibáñez, M.; Gómez de la Fuente, J. L.; Pérez‐Alonso, F. J.; Peña, M. A.; Cabot, A.; Rojas, S., In situ study of ethanol electrooxidation on monodispersed Pt3Sn nanoparticles. ChemElectroChem 2014, 1 (5), 885-895.
[88] Rizo, R.; Lázaro, M. J.; Pastor, E.; Koper, M. T., Ethanol Oxidation on Sn‐modified Pt Single‐Crystal Electrodes: New Mechanistic Insights from On‐line Electrochemical Mass Spectrometry. ChemElectroChem 2016, 3 (12), 2196-2201.
[89] Lin, Z. J.; Chou, T. F.; Liu, C. W.; Huang, P. H.; Guo, Y. Z.; Wang, J. H.; Wang, K. W., The structure-dependent enhancement of the oxygen reduction reaction performance of Co-based low Pt catalysts through Au addition. J. Mater. Chem. A 2016, 4 (28), 11023-11029.
[90] Yin, S.; Xie, Z.; Deng, X.; Xuan, W.; Duan, Y.; Zhang, S.; Liang, Y., Simple synthesis of ordered platinum-gold nanoparticles with the enhanced catalytic activity for oxygen reduction reaction. J. Electroanal. Chem. 2020, 856, 113707.
[91] Deng, X.; Yin, S.; Wu, X.; Sun, M.; Xie, Z.; Huang, Q., Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2018, 283, 987-996.
[92] Lim, J.-E.; Lee, U. J.; Ahn, S. H.; Cho, E.; Kim, H. J.; Jang, J. H.; Son, H.; Kim, S. K., Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid. Appl. Catal. B 2015, 165, 495-502.
[93] Lee, K. S.; Park, H. Y.; Ham, H. C.; Yoo, S. J.; Kim, H. J.; Cho, E.; Manthiram, A.; Jang, J. H., Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction. J. Phys. Chem. C 2013, 117 (18), 9164-9170.
[94] Park, H. Y.; Jeon, T. Y.; Jang, J. H.; Yoo, S. J.; Choi, K. H.; Jung, N.; Chung, Y. H.; Ahn, M.; Cho, Y. H.; Lee, K. S., Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment. Appl. Catal. B 2013, 129, 375-381.
[95] Jung, W. S.; Popov, B. N., Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells. ACS Sustainable Chem. Eng. 2017, 5 (11), 9809-9817.
[96] Jung, W. S.; Popov, B. N., New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. ACS Appl. Mater. Interfaces 2017, 9 (28), 23679-23686.
[97] Jung, W. S.; Lee, W. H.; Oh, H. S.; Popov, B. N., Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J. Mater. Chem. A 2020, 8 (38), 19833-19842.
[98] Kang, Y. S.; Choi, D.; Park, H. Y.; Yoo, S. J., Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction. J. Ind. Eng. Chem. 2019, 78, 448-454.
[99] Jung, N.; Chung, Y. H.; Chung, D. Y.; Choi, K. H.; Park, H. Y.; Ryu, J.; Lee, S. Y.; Kim, M.; Sung, Y. E.; Yoo, S. J., Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions. Phys. Chem. Chem. Phys. 2013, 15 (40), 17079-17083.
[100] Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G., Ordered Pt3Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction. Nano Lett. 2018, 18 (7), 4163-4171.
[101] Bhalothia, D.; Fan, Y. J.; Huang, T. H.; Lin, Z. J.; Yang, Y. T.; Wang, K. W.; Chen, T. Y., Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts. J. Phys. Chem. C 2019, 123 (31), 19013-19021.
[102] Nagasawa, K.; Takao, S.; Nagamatsu, S. i.; Samjeské, G.; Sekizawa, O.; Kaneko, T.; Higashi, K.; Yamamoto, T.; Uruga, T.; Iwasawa, Y., Surface-regulated nano-SnO2/Pt3Co/C cathode catalysts for polymer electrolyte fuel cells fabricated by a selective electrochemical Sn deposition method. J. Am. Chem. Soc. 2015, 137 (40), 12856-12864.
[103] Morris, D. J.; Zhang, P., In situ X‐ray Absorption Spectroscopy of Platinum Electrocatalysts. Chemistry‐Methods 2021, 1 (3), 162-172.
[104] Arán Ais, R. M.; Solla Gullón, J.; Herrero, E.; Feliu, J. M., On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. J. Electroanal. Chem. 2018, 808, 433-438.
[105] Liu, M.; Hu, A.; Ma, Y.; Wang, G.; Zou, L.; Chen, X.; Yang, H., Nitrogen-doped Pt3Co intermetallic compound nanoparticles: A durable oxygen reduction electrocatalyst. J. Electroanal. Chem. 2020, 871, 114267.
[106] Cai, Y.; Gao, P.; Wang, F.; Zhu, H., Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction. Electrochim. Acta 2017, 245, 924-933.
[107] Yang, W.; Zou, L.; Huang, Q.; Zou, Z.; Hu, Y.; Yang, H., Lattice Contracted Ordered Intermetallic Core-Shell PtCo@Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction. J. Electrochem. Soc. 2017, 164 (6), H331.
[108] Arumugam, B.; Kakade, B. A.; Tamaki, T.; Arao, M.; Imai, H.; Yamaguchi, T., Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Adv. 2014, 4 (52), 27510-27517.
[109] Tamaki, T.; Minagawa, A.; Arumugam, B.; Kakade, B. A.; Yamaguchi, T., Highly active and durable chemically ordered Pt–Fe–Co intermetallics as cathode catalysts of membrane–electrode assemblies in polymer electrolyte fuel cells. J. Power Sources 2014, 271, 346-353. |