博碩士論文 105329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:35.172.217.40
姓名 王怡雯(Yi-Wun Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 耐高壓離子液體電解質
(The Ionic Liquid Electrolytes for High Voltage Lithium Ion Batteries.)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 石墨烯負極和離子液體電解液於鈉二次電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的第一部分,首先比較離子液體0.8 m LiFSI/PMP-FSI與傳統碳酸酯類電解質1 M LiPF6/EC-DEC應用在高電壓LiNi0.5Mn1.5O4/Li半電池中。0.8 m LiFSI/PMP-FSI電解質在熱穩定性及浸泡實驗中皆能得到較1 M LiPF6/EC-DEC好的表現;但是,在高電壓環境下0.8 m LiFSI/PMP-FSI會發生鋁腐蝕的問題,使其無法應用於LiNi0.5Mn1.5O4的材料中。
延續第一部分的結果,在第二部分針對0.8 m LiFSI/PMP-FSI改質。首先提高鋰鹽濃度來嘗試抑制鋁腐蝕反應。發現鋰鹽濃度愈高,愈能抑制鋁腐蝕反應,但3.2 m LiFSI/PMP-FSI為最大溶解濃度也無法完全抑制鋁腐蝕,故需需要尋找其他方法解決鋁腐蝕問題。
在第二部分發現提高鋰鹽濃度確實能改善鋁腐蝕問題,但仍無法完全抑制。故在第三部分加入TFSI陰離子期望能得到更好的結果,相比純FSI-based離子液體,加入TFSI陰離子後的鋁腐蝕反應明顯降低,在0.8 m LiFSI/FT 13的條件下可解決鋁腐蝕問題。但發現其在高速充放電及graphite負極中電性表現較純FSI-based離子液體來的差,故本研究期望能在改善配方已得到最佳的電性表現。
在第四部分,結合第二及第三部分的研究,同時提高Li及TFSI濃度,發現在TFSI比例較低的配方下即可抑制鋁腐蝕問題,其中2.4 m LiTFSI/PMP-FSI雖然在抑制鋁腐蝕方面略遜於0.8 m LiFSI/FT 13,但在高速充放電及graphite負極中表現較好。
摘要(英) In the first part of the study, we first compared the ionic liquid 0.8 m LiFSI/PMP-FSI with the traditional carbonate electrolyte 1 M LiPF6/EC-DEC in a high voltage LiNi0.5Mn1.5O4/Li half-cell. 0.8 m LiFSI/PMP-FSI electrolytes can achieve better performance than 1 M LiPF6/EC-DEC in thermal stability and immersion experiments; however, aluminum corrosion occurs at 0.8 m LiFSI/PMP-FSI in high voltage environments. The problem is that it cannot be applied to LiNi0.5Mn1.5O4.
Continuing the results of the first part, the second part was modified for 0.8 m LiFSI/PMP-FSI. First, increase the lithium salt concentration to try to suppress the aluminum corrosion reaction. It is found that the higher the lithium salt concentration, the more the aluminum corrosion reaction can be inhibited, but the 3.2 m LiFSI/PMP-FSI is the maximum dissolved concentration and can not completely inhibit the aluminum corrosion. Therefore, it is necessary to find other methods to solve the aluminum corrosion problem.
In the second part, it was found that increasing the lithium salt concentration did improve the aluminum corrosion problem, but it could not be completely suppressed. Therefore, the addition of TFSI anion in the third part is expected to give better results. Compared with the pure FSI-based ionic liquid, the aluminum corrosion reaction after adding the TFSI anion is significantly reduced, and the aluminum corrosion can be solved under the condition of 0.8 m LiFSI/FT 13. However, it was found that its electrical performance in high-speed charge and discharge and graphite anodes is worse than that of pure FSI-based ionic liquids. Therefore, this study is expected to obtain the best electrical performance in improving the formulation.
In the fourth part, combined with the second and third parts of the study, while increasing the concentration of Li and TFSI, it was found that the aluminum corrosion problem can be suppressed under the formulation with a lower TFSI ratio, of which 2.4 m LiTFSI/PMP-FSI is inhibiting aluminum. Corrosion is slightly inferior to 0.8 m LiFSI/FT 13, but it performs better in high-speed charge and discharge and graphite anode.
關鍵字(中) ★ 高電壓
★ 離子液體
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
誌謝 V
總目錄 VI
表目錄 X
圖目錄 XV
一、 前言 1
二、 研究背景與文獻回顧 3
2-1 高電壓鋰離子電池正極 3
2-1-1 高電壓正極材料簡介 3
2-1-2 LiNi0.5Mn1.5O4正極材料 5
2-2 有機電解質應用於高電壓鋰離子電池 7
2-2-1 電解質溶劑分解 7
2-2-2 鋰鹽分解 13
2-2-3 全電池問題 14
2-2-4 安全性 17
2-3 離子液體電解質 19
2-3-1 離子液體於高電壓下研究現況 19
2-3-2 FSI-系列離子液體於負極下研究現況 22
2-3-3 FSI-系列離子液體在正極下的應用 26
2-4 FSI-based離子液體在高電壓下的問題 28
2-4-1 鋁基材腐蝕 28
2-4-2 鋁基材腐蝕解決方法 33
三、 實驗方法與步驟 39
3-1 實驗藥品與器材 39
3-1-1 實驗藥品 39
3-1-2 實驗器材 40
3-2 離子液體製備 41
3-2-1 不同LiFSI濃度離子液體 41
3-2-2 不同陰離子比例離子液體 41
3-2-3 不同LiTFSI濃度離子液體 42
3-3 電池製備 43
3-3-1 極片製作 43
3-3-2 鈕扣型電池封裝 43
3-4 基礎性質分析 44
3-4-1 Raman 44
3-4-2 黏度計 44
3-4-3 燃燒測試 44
3-4-4 TGA 45
3-4-5 浸泡實驗 45
3-4-6 XRF 45
3-4-7 SEM 45
3-5 電化學性質測試 46
3-5-1 線性掃描伏安法與定電壓測試(Linear scan voltammetry) 46
3-5-2 計時電位法(Chronopotentimetry) 46
四、 結果與討論 47
4-1 不同電解質應用於LNMO正極 47
4-1-1 電解質之黏度 47
4-1-2 TGA熱穩定分析 48
4-1-3 燃燒測試 49
4-1-4 浸泡實驗 51
4-1-5 電解質電位窗量測 53
4-1-6 室溫下的石墨負極定電流充放電 54
4-1-7 電解質之鋁腐蝕探討 59
4-1-8 室溫下的LNMO正極定電流充放電 63
4-2 不同LiFSI濃度離子液體電解質應用於LNMO正極 66
4-2-1 電解質之黏度 66
4-2-2 電解質之結構鑑定 67
4-2-3 TGA熱穩定分析 71
4-2-4 燃燒測試 72
4-2-5 電解質之鋁腐蝕探討 74
4-2-6 室溫下的LNMO正極定電流充放電 78
4-3 FSI-及TFSI-混和型離子液體電解質 84
4-3-1 電解質之黏度 84
4-3-2 電解質之結構鑑定 85
4-3-3 TGA之熱穩定分析 87
4-3-4 燃燒測試 88
4-3-5 電解質之鋁腐蝕探討 90
4-3-6 室溫下的LNMO正極定電流充放電 94
4-3-7 室溫下的石墨負極定電流充放電 101
4-4 不同LiTFSI濃度離子液體電解質應用於LNMO正極 107
4-4-1 電解質之黏度 107
4-4-2 電解質之結構鑑定 108
4-4-3 TGA之熱穩定分析 110
4-4-4 電解質之鋁腐蝕探討 111
4-4-5 室溫下的LNMO正極定電流充放電 116
4-4-6 室溫下的石墨負極定電流充放電 122
五、 結論 128
六、 參考文獻 129
參考文獻 1. M. J. Earle, et al., The distillation and volatility of ionic liquids. Nature, 2006. 439: p. 831-834.
2. M. Armand, et al., Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009. 8: p. 621-629.
3. M. S. Whittingham, Lithium Batteries and Cathode Materials. Chem. Rev., 2004. 104(10): p. 4271-4302.
4. Y. Li, et al., A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews, 2014. 37: p. 627-633.
5. Z. D. Li, et al., Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. Journal of Power Sources, 2013. 240: p. 471-475.
6. A. Kraytsberg and Y. E. Eli, Higher, Stronger, Better … A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Adv. Energy Mater,2012. 2: p. 922-939.
7. W. F. Howard and R. M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources,2007. 165(2): p. 887-891.
8. R. Santhanam and B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. Journal of Power Sources,2010. 195(17): p. 5442-5451.
9. X. L. Xu, et al., Research Progress in Improving the Cycling Stability of HighVoltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nano-Micro Lett, 2017. 9:22.
10. J. Song, et al., Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5?x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater.,2012. 24(15): p. 3102-3109.
11. T. Ohzuku, et al., Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. Ceram. Soc. Jpn.,2002. 110(1281): p. 501-505.
12. Y. Idemoto, et al., Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. Journal of Power Sources,2003. 119-121: p. 125-129.
13. L. Wang, et al., A comparative study of Fd3m and P4332 ‘‘LiNi0.5Mn1.5O4’’. Solid State Ionics,2011. 193(1): p. 32-38.
14. M. Kunduraci and G. G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochimica Acta, 2008. 53(12): p. 4193-4199.
15. J. Ma, et al., Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chem. Mater,2016. 28(11): p. 3578-3606.
16. Y. Li, et al., Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2010. 13(8): p. A95-A97.
17. D. Aurbach, et al., Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. Journal of Power Sources,2006. 162(2): p. 780-789.
18. N. P. W. Pieczonka, et al., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. J. Phys. Chem. C, 2013. 117(31): p. 15947-15957.
19. S. E. Sloop, et al., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. Journal of Power Sources,2003. 119-121: p. 330-337.
20. A. M. Andersson and K. Edstrom, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. Journal of The Electrochemical Society,2001. 148(10): p. A1100-A1109.
21. J. H. Kim, et al., Challenges and Approaches for High-Voltage Spinel Lithium-Ion Batteries. ChemPhysChem, 2014. 15(10): p. 1940-1954.
22. M. Moshkovich, et al., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. Journal of Electroanalytical Chemistry,2001. 497(1-2): p.84-96.
23. J. Ufheil, et al., Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte. Electrochemistry Communications, 2005. 7(12): p. 1380-1384.
24. M. Arakawa and J. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. Journal of Power Sources,1995. 54(2): p. 250-254.
25. T. Aoshima, et al., Mechanisms of manganese spinels dissolution and capacity fade at high temperature. Journal of Power Sources, 2001. 97-98: p. 377-380.
26. H. E. Morris, REACTIONS OF ETHYL ALCOHOL. Chemical Reviews, 1932. 10: p.465-506.
27. B. Ravdel, et al., Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003. 119-121: p. 805-810.
28. T. Kawamura, et al., Thermal Stability of Alkyl Carbonate Mixed-Solvent Electrolytes for Lithium Ion Cells. J. Power Sources 2002. 104(2): p. 260-264.
29. D. Aurbach, et al., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. J. Electrochem. Soc, 1996. 143(12): p. 3809-3820.
30. P. B. Balbuena and Y. Wang, Lithium-Ion Batteries: Solid-Electrolyte Interphase. Imperial College Press: London, 2004; Chapt. 2, p. 113.
31. O. K. Park, et al., Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci., 2011. 4: p. 1621-1633.
32. D. H. Jang and S. M. Oh, Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells. J. Electrochem. Soc., 1997. 144(10): p. 3342-3348.
33. J. C. Hunter, Preparation of a New Crystal Form of Manganese Dioxide: λ-MnO2. Journal of Solid State Chemistry, 1981. 39(2): p. 142-147.
34. J. H. Kim, et al., Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochimica Acta, 2013. 90: p. 556-562.
35. S. Komaba, et al., Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochimica Acta, 2002. 47(8): p. 1229-1239.
36. S. Komaba, et al., Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. Journal of Power Sources, 2003. 119-121: p. 378-382.
37. A. Wuersig, et al., CO2 Gas Evolution on Cathode Materials for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2007. 154(5): p. A449-A454.
38. M. Holzapfel, et al., Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p.1156-1160.
39. K. W. Leitner, et al., Electroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. Journal of Power Sources, 2013. 244: p.548-551.
40. O. Y. Chusid, et al., Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems. Journal of Power Sources, 1993. 43(1-3): p. 47-64.
41. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy, 2010. p.171-179.
42. R. Imhof and P. Novak, Oxidative Electrolyte Solvent Degradation in Lithium‐Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation. Journal of The Electrochemical Society,1999. 146(5): p.1702-1706.
43. X. Zhang, et al., Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. Journal of The Electrochemical Society, 2001. 148(12): p.A1341-A1345.
44. P. G. Balakrishnan, et al., Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006. 155(2): p. 401-414.
45. S. Tobishima and J. I. Yamaki, A consideration of lithium cell safety. Journal of Power Sources, 1999. 81-82: p.882-886.
46. T. M. Bandhauer, et al., A Critical Review of Thermal Issues in Lithium-Ion Batteries. Journal of The Electrochemical Society, 2011. 158(3): p. R1-R25.
47. J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries. Chem. Mater.2010. 22(3): p. 587–603.
48. K. E. Johnson, What’s an ionic liquid? The Electrochemical Society Interface • Spring, 2007. p. 38-41.
49. P. Wasserscheid and T. Welton, Ionic liquids in synthesis. vol 1. Wiley, New Jersey, 2008.
50. B. Kirchner, et al., Real-world predictions from ab initio molecular dynamics simulations. Multiscale molecular methods in applied chemistry, 2011. New York, p. 109-153.
51. C. A. Angell, et al., Parallel developments in aprotic and protic ionic liquids: Physical chemistry and applications. Acc. Chem. Res., 2007. 40(11): p. 1228-1236.
52. G. G. Eshetu, et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys Chem Chem Phys, 2013. 15(23): p. 9145-9155.
53. A. Balducci, et al., Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011. 196(22): p. 9719-9730.
54. M. Ishikawa, et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources, 2006. 162(1): p. 658-662.
55. S. F. Lux, et al., Li-ion anodes in airstable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int. J. Energy Res., 2010. 34(2): p. 97-106.
56. G. B. Appetecchi, et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes. J. Power Sources,2009. 192(2): p. 599-605.
57. S. F. Lux, et al., Lithium insertion in graphite from ternary ionic liquid–lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature. J. Power Sources,2009. 192(2): p. 606-611.
58. C. Liu, et al., Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide / N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochimica Acta, 2014. 149: p. 370-385.
59. K. Yamaguchi, et al., Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. Journal of Power Sources, 2017. 338: p. 103-107.
60. H. Matsumoto, et al., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]−. Journal of Power Sources, 2006. 160 (2): p. 1308-1313.
61. M. A. Navarra, Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bull, 2013. 38(7): p. 548-553.
62. G. T. Kim, et al., Development of ionic liquid-based lithium battery prototypes. J. Power Sources, 2012. 199: p. 239-246.
63. J. Kalhoff, et al., Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem,2015. 8(13): p. 2154-2175.
64. G. Wang, et al., Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 2016. 72: p. 148-152.
65. E. Markevich, et al., On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries. Electrochemistry Communications, 2006. 8(8): p. 1331-1334.
66. V. Borgel, et al., On the application of ionic liquids for rechargeable Li batteries: High voltage systems. Journal of Power Sources, 2009. 189(1): p. 331-336.
67. J. Mun, et al., Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochemical and Solid-State Letters, 2010. 13(8): p. A109-A111.
68. X. Cao, et al., High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Appl. Mater. Interfaces, 2016. 8(39): p. 25971-25978 .
69. N. Salem, et al., Physical and Electrochemical Properties of Some Phosphonium-Based Ionic Liquids and the Performance of Their Electrolytes in Lithium-Ion Batteries. Journal of The Electrochemical Society, 2017. 164(8): p. H5202-H5209.
70. L. Otaegui, et al., Effect of the electrolytic solvent and temperature on aluminium current collector stability: A case of sodium-ion battery cathode. Journal of Power Sources, 2015. 297: p. 168-173.
71. C. Forestier, et al., Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt. Journal of Power Sources, 2016. 330: p. 186-194.
72. J. Braithwaite, et al., Corrosion of Current-collector Materials in Li-ion Cells. Sandia National Labs, Albuquerque, NM (United States), 1996.
73. H. Yang, et al., Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 2006. 161(1): p. 573-579.
74. H. B. Han, et al., Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011. 196(7): p. 3623-3632.
75. H. Louis, et al., Suppression of aluminum corrosion in lithium bis(trifluoromethansulfonyl)imide-based electrolytes by the addition of fumed silica. Bull. Korean Chem. Soc., 2013. 34(6): p. 1795-1799.
76. C. Peng, et al., Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta, 2008. 53(14): p. 4764-4772.
77. J. L. Allen, et al., N-Alkyl-N-methylpyrrolidinium difluoro(oxalato)borate ionic liquids: Physical/electrochemical properties and Al corrosion. Journal of Power Sources, 2013. 237: p. 104-111.
78. T. Vogl, et al., Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys., 2014. 16: p. 25014-25023.
79. E. Krämer, et al., Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent. ECS Electrochem. Lett, 2012. 1(5): p. C9-C11.
80. R. S. Kühnel and A. Balducci, Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. Journal of Power Sources, 2014. 249: p. 163-171.
81. K. Park, et al., Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes. Journal of Power Sources, 2015. 296: p. 197-203.
82. K. Matsumoto, et al., Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room and Intermediate Temperatures. J. Phys. Chem. C, 2017. 121(12): p. 9209-9219.
83. J. Wang, et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications, 2016. 7: p. 1-9.
84. E. Cho, et al., Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications, 2012. 22:p. 1-3.
85. H. Yoon, et al., Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys., 2015. 17: p. 4656-4663.
86. H. Sano, et al., Effect of Charge Transfer Resistance on Morphology of Lithium Electrodeposited in Ionic Liquid. J. Electrochem. Soc., 2016. 163(12): p. D3076-D3079.
87. H. Yoon, et al., Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 2013. 160(10): p. A1629-A1637.
指導教授 張仍奎 李勝偉 審核日期 2018-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明