博碩士論文 105356018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.175.179.52
姓名 梁原銘(Liang,YUAN-MING)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 製程高溫設備失效模式與效應分析-以某半導體廠為例
(Application of Failure Mode and Effect Analysis in Risk Assessment and Management of Equipment Used in High-operating Temperatures for Production Processes – A Case Study of a Semiconductor Factory)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響
★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例
★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例
★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢
★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例
★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-7-24以後開放)
摘要(中) 半導體封測產業中許多化學原料(如易燃性化學品、強酸、強鹼、強氧化性物質、易燃性氣體)隨著製程需求而用於各種製程高溫設備,國內法規上雖已針對化學品使用訂定相關法令規定管理;但在設備上相關的法令要求、規範未如國外已訂定出明確可依循之標準規範,造成企業各界在設備採購規範訂定時,僅能憑藉經驗多寡來要求符合程度,在此情形下容易衍生出因設備安全設計不佳及現場管理不當而造成火災,再加上廠房設計多屬於密閉環境,發生火災時導致人員疏散及救災困難;本研究以失效模式與效應分析(Failure Mode and Effect Analysis, FMEA)、EMI S10風險評估方法,分析製程高溫設備在設備元件、排氣系統、安全連鎖裝置功能失效時可能產生的危害,並依風險評估結果研擬改善對策。
本研究以半導體封測產業內,針對製程高溫設備造成的火災項目進行失效分析,發現在設備元件以線路材質易碳化風險優先指數最高(RPN為320)、排氣系統以排氣管路內部凝結物風險優先指數最高(RPN為392)、安全連鎖裝置以安全連鎖裝置與溫度偵測系統風險優先指數最高(RPN為336);針對各失效項目進行分析,得知風險優先指數偏高的原因,除了具有因果關係外;普遍問題在於現有預防及偵測上的不足,導致無法防範失效發生;本研究以如何提早預防失效發生做為改善對策,改善前後進行差異性比較,結果如設備元件之異常以線路材質易碳化,RPN指數降至128;安全連鎖裝置之異常以安全連鎖裝置其RPN指數降至96、與溫度偵測系統其RPN指數降至144;在排氣風管之異常以排氣管路內部蓄積揮發凝結物,其RPN指數由392降至112,由改善成果得知應提早在設備規劃及評估階段中即訂定各項標準,可降低製程設備在運轉時所產生的失效發生機率。
綜合上述結果,排氣管路內部凝結物風險值最高,致因為高溫氣體接觸低溫表面時造成凝結現象。安全連鎖裝置功能風險值次高,致因為設備機構未與安全連鎖裝置連動控制。線路材質碳化,致因為元件溫度超過線路絕緣層溫度即產生碳化現象。上述項目在管理控制應加強人員例行檢測、清潔頻率及定期以紅外線熱影像儀量測溫度。工程控制上在排氣管路內部可設置凝結物收集板及排氣流量偵測器。安全連鎖裝置應以雙重及雙迴路式保護裝置作為連動控制。線路材質碳化應把材質更換成耐熱材質。
摘要(英) In the semiconductor packaging and testing industry, many raw materials (such as flammable chemicals, strong acids, strong alkalis, strong oxidizing substances and flammable gases) are used in various processes equipment operated at high temperatures according to the process requirements. While the products are regulated by the relevant laws and regulations, these laws and regulations are not as clear and specific as the standards that can be followed in foreign countries, resulting in that enterprises can only rely on the experience to set up their equipment procurement specifications. In this case, it is easy to derive the fire caused by poor equipment safety design and improper on-site management. In addition, the design of the plant is mostly in a closed environment, which leads to the difficulty of people evacuation and disaster relief when the fire occurs. In this study, the Failure Mode and Effect Analysis (FMEA) and EMI S10 risk assessment method are used to analyze the hazards that can be caused in the process of equipment with high-temperature operation (i.e., High Temperature Equipment) by the functional failure of apparatus components, exhaust system and the safety interlock devices, and study the improvement countermeasures according to the risk assessment results.

Using a semiconductor packaging and testing industry as a case, the failure analysis of the fire project caused by the process of High Temperature Equipment reveals that (i) among the Equipment Components, the highest risk priority number is when the element material is carbonated (RPN was 320); (ii) in the Exhaust System, when the pipeline full of internal condensation, the highest risk priority number is scored 392; (iii) among the Safety interlock System, the highest risk priority number of the safety interlock devices and the temperature detection devices are scored 336. According to the analysis of various failure items, it was found that the reason of the high risk priority, apart from causality, the general problems are lack of existing prevention and detection deficiencies, which leads to the failure to prevent the occurrence. This study also takes how to early prevention of failures as an improvement strategy to compare the differences between before and after improvement that is made. It is found that the abnormity of the equipment components is carbonated by the element material, the RPN scored is reduced to 128; the RPN scored of the safety interlock system is reduced to 96, and the RPN scored of the temperature detection system is reduced to 144; in exhaust pipe, the abnormal internal condensation in the pipeline which RPN scored fell from 392 to 112. From the outcome of the improvement, it is known that the Standards should be set up early in the stage of equipment planning and evaluation to reduce the failure rate of process equipment during operation.

According to the above results, the risk value of internal condensation of exhaust pipeline is the highest, resulting in condensation phenomenon caused when a high temperature gas contacting with cold surfaces. The second high risk value is the safety interlock system, because the equipment machine is not connected with the safety interlock devices. The element material carbonation ranks the third place, because the component temperature exceeds the circuit insulation temperature. Hence. the above projects in the management control should be strengthened via personnel routine testing, cleaning frequency and regular infrared thermal imaging instrument to measure temperature; further, in engineering control, a condensation collecting plate and the exhaust flow detector can be set up inside the exhaust pipe and safety interlock system should controlled by double and double loop protection devices; lastly, the material carbonation of the circuit material should be replaced with a heat-resistant material.
關鍵字(中) ★ 失效模式與效應分析
★ 半導體封裝製程
★ 製程加熱設備
★ 風險評估
關鍵字(英) ★ Failure Mode and Effect Analysis
★ Semiconductor Packaging Process
★ High Temperature Equipment in Production Processes
★ Risk assessment
論文目次 摘 要 I
ABSTRACT III
誌 謝 VI
目 錄 VII
圖 目 錄 IX
表 目 錄 X
第一章 前言 1
1.1研究緣起 1
1.2研究目的 3
第二章 文獻回顧 5
2.1半導體業相關發展 5
2.1.1半導體產業現況 5
2.1.2 半導體IC封裝產業製程簡介 5
2.1.3 半導體IC封裝廠高溫設備潛在危害 8
2.2國外相關規範 10
2.3 風險評估 10
2.3.1 風險評估說明 11
2.3.2 危害辨識及風險評估方法介紹 11
2.3.3 風險管理等級 16
2.4 FMEA之沿革與定義 18
第三章 研究方法 21
3.1 研究架構 21
3.2 研究對象 22
3.2.1 FMEA風險評估 22
3.2.2 FMEA 欄位說明 24
3.2.3 FMEA實施手冊第四版之實施流程 24
3.2.4 製程設備資料蒐集 26
3.3 FMEA 危害辨識 27
3.4 FMEA失效模式建立 28
3.5 FMEA風險評估方式 35
3.6 小結 37
第四章 結果與討論 38
4.1 高溫製程設備失效模式建立 38
4.2 失效項目分析及改善對策 43
4.3 SEMI 風險等級評估 51
第五章 結論與建議 55
5.1 結論 55
5.2 建議 55
參考文獻 56
附錄一 製程高溫設備失效模式結果分析表 59
參考文獻 1.陳柏仁,二矽烷爐管製程設備危害與風險評估,國立中央大學環境工
程研究所在職專班,碩士論文,2011。
2.洪健仁,半導體廠局部尾氣處理設備危害與風險評估,國立中央大學環境工程研究所在職專班,碩士論文,2009。
3.FMEA 2008 第四版手冊,2010。
4.許錦明、葉忠益,應用HAZOP及Hazard Tree Analysis (HTA)風險分析技術於蒸汽鍋爐工場之適用性研析,勞動部勞動及職業安全衛生研究所,第21卷第1期,2013。
5.張承明、于樹偉、張日誠,勞動部勞動及職業安全衛生研究所,事故調查與分析方法之應用,第21卷第1期,2013。
6.林誠興、呂憲章、陳孟吟、虞嘉駿,勞動部勞動及職業安全衛生研究所,半導體廠房火災電腦模擬,第19卷 第4期,2013。
7.製程安全評估定期實施辦法,2014。
8.謝哲明,半導體封測廠經營效率之研究,義守大學管理研究所碩士班,碩士論文,2006。
9.勞動部職業安全衛生署,事業單位實施定期製程安全評估參考手冊,2016。
10.周聖哲,企業減災預防技術與案例,中華民國工業安全衛生協會,2017。
11.半導體製造概論,2016。
12.林明哲,半導體製程與設備介紹,義守大學機械與自動化工程學系,2010。
13.TS 16949產品經理,如何發揮FMEA失效模式分析的功用,BSI 英國標準協會台灣分公司課程講義,2009。
14.賴怡君,FMEA運用在退貨風險管理之研究,元智大學工業工程研究所,碩士論文,2007。
15.黃清賢,危害分析與風險評估,三民書局,2002。
16.風險評估技術指引,勞動部職業安全衛生署,2015。
17.周智偉,FMEA應用於設備組裝改善,國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文,2012。
18.吳文貴,應用品質機能展開及失效模式與效應分析於新產品評估期之品質改善-以半導體封裝設備為例,明志科技大學工業工程與管理研究所,碩士論文,2011。
19.吳建輝,應用FMEA於氣化供應系統風險評估之研究-以某半導體廠矽甲烷為例,國立清華大學工業工程與工程管理學系碩士在職專班,碩士論文,2010。
20. Carlson, Carl S., Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode and Effects Analysis,2012。
21.Semi S10-815E Safety Guideline For Risk Assessment and
Risk Evaluayion Process,2017。
22.Harnly, J.A., “Risk Base Prioritization of Maintenance
Repair Work”,Process Safety Progress,Vol.17,No.11998。
23.Stamatis, D.H., Failure Mode and Effect Analysis FMEA from Theory to Execution, ASQC Quality Press Milwaukee, Wisconsin,1995。
24.Wang, J, and Ruxton, T. and Labride, C. R. “Design for Safety of Engineering System with Multiple Failure State variables,” Reliability Engineering and System Safety 50,1995。
25.D. H. Stamatis, Failure Mode and Effect Analysis: Fmea from Theory to Execution,2003。
26. Carlson, Carl S., Effective Failure Mode and Effect Analysis:Howto Achieve high reliablity in Products,2012。
27.Dhanasekharan Natarajan, Reliable Design of Electronic Equipment ─ An Engineering Guide,2014。
指導教授 林居慶 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明