博碩士論文 105382003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.77.195
姓名 徐煜淳(Yu-Chun Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 液化地盤-樁基礎-上部結構受震行為之研究
(The study on seismic behavior of soil-pile-superstructure interaction in liquefiable soil.)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-3-1以後開放)
摘要(中) 台灣地震發生頻繁,地震期間地盤可能發生土壤液化現象,將導致建築物、橋梁與風機結構等基礎瞬間失去垂直與水平向之承載能力。依據現行設計規範為將具液化潛能之地盤參數進行不同程度之折減作為設計,而各規範建議之折減係數範圍差異甚大,且該設計觀念為將複雜之土壤液化行為簡化為擬靜態分析之設計方法,並未考慮液化土壤結構受震互制之複雜行為。因此,本研究利用離心模型試驗與FLAC2D二維有限差分數值模型分析,進行一系列之液化地盤-樁基礎-上部結構之受震互制試驗與模擬分析,探討土壤液化對樁基礎結構物各項設計考量因素之影響。並利用動態受震與擬靜態側推分析之結果,提出一套等值液化參數折減係數DE’之評估流程,針對現行規範建議之液化折減係數提出定性與定量之討論。
本研究建立之數值模型經由參數率定後,方可有效模擬離心模型試驗之樁土受震液化反應。在考量等效單樁、群樁、液化、非液化、長短結構週期與多組人造震動等眾多因素下之分析結果顯示,在相同慣性力作用下,動態分析求得之樁身變位與彎矩反應均較擬靜態分析結果大。而12組震動事件之分析統計結果顯示,土壤液化對結構慣性力實具減震之作用,並對樁身變位、旋轉角與彎矩等反應均有負面之影響,而對樁身最大剪力分佈則無明顯影響。針對短週期結構模型之液化折減係數DE研究結果顯示,日本道路協會(JRA)建議之DE在多個案例分析中發生不保守之狀況;而日本建築學會(AIJ)建議之DE則多為保守之情形。最後,藉由不同等值條件求得之平均等值液化折減係數DE’界於兩規範建議值之間。綜整上述結論以供未來相關研究與工程實務設計參考。
摘要(英) Taiwan is a seismic active zone. Soil liquefaction often occurs during strong earthquake. It will greatly reduce the horizontal and vertical bearing capacities of foundations and cause unacceptable deformations of structures. The current design codes use the reduction coefficient DE to reduce the soil’s modulus and strength so that the softening effect caused by liquefaction can be taken into account in the traditional quasi-static design methodology. This methodology is unable to consider the complicated seismic liquefied soil-structure interaction (LSSI).
This study aims to establish a simple and practical numerical model to investigate LSSI effect of pile structures. The FLAC2D software was used to create the model. The PM4Sand constitutive law was used to simulate the stress-strain-pore pressure relations of soils. At the first, the parameters of PM4Sand model was calibrated by the results of dynamic centrifuge tests. It is found that the test responses of LSSI can be reasonably simulated by the numerical model.
After that, a series of LSSI numerical tests were performed by the proposed model considering the differences of equivalent single pile and group piles, liquefaction and non-liquefaction, short and long period structures, and input earthquake motions. The test results show that the deformation and bending moment of pile obtained from dynamic LSSI analysis are larger than those from static pushover analysis under the same inertial force of upper structure. Based on the statistical results from twelve different input motions, soil liquefaction reduces the inertial force of superstructure and increases the deformation, rotation and bending moment of piles.
The statistical results of numerical analysis were used to calibrate the equivalent reduction coefficient DE’ used in quasi static analysis. The calibrated average DE’ is about 0.25 which less than DE=0.33 suggested by Japanese Road Association and greater than DE=0 suggested by Japanese Architectural Institute for the numerical case in this study.
關鍵字(中) ★ 土壤液化
★ 基樁
★ 液化折減係數
★ FLAC
★ PM4Sand
關鍵字(英) ★ soil liquefaction
★ pile foundation
★ liquefaction reduction coefficient
★ FLAC
★ PM4Sand
論文目次 摘要 i
Abstract iii
目錄 vii
圖目錄 xii
表目錄 xix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與流程 3
1.3 論文架構 5
第二章 文獻回顧 6
2.1 土壤液化 6
2.2 樁基礎於液化土層中之受震行為 10
2.2.1 基樁之最大受力狀態 12
2.2.2 土壤液化之剪脹效應 16
2.2.3 土壤液化之減震作用 18
2.2.4 基樁動態特性之影響 19
2.3 現行考量地盤液化之樁基礎設計方法 21
2.3.1 現行設計規範 21
2.3.2 現行設計方法 23
2.4 液化土壤之參數折減係數研究 28
2.4.1 相關規範之發展 28
2.4.2 國內外相關研究成果 29
2.5 樁基礎於液化土層中受震之研究 35
2.5.1 大型振動台試驗 35
2.5.2 離心模型試驗 36
2.5.3 Winkler基礎模型分析 36
2.5.4 有限元素/有限差分數值分析 37
2.6 有效應力分析組成律模式 39
2.6.1 相關液化分析組成律簡介 39
2.6.2 相關液化分析組成律之優缺點比較 41
2.6.3 PM4Sand有效應力分析組成律 48
第三章 液化地盤中單樁基礎受水平震動之離心模型試驗 58
3.1 離心模型原理 58
3.2 試驗方法與設備 61
3.2.1 試驗方法 61
3.2.2 試驗設備 61
3.3 試驗規劃與配置 68
3.3.1 單樁基礎風機模型 68
3.3.2 試驗配置 72
3.3.3 座標系統定義 73
3.3.4 震動事件 74
3.4 試驗結果與討論 75
3.4.1 主震事件分析 75
3.4.2 樁土主頻判別分析 88
3.4.3 土層剪應力.剪應變分析 91
第四章 FLAC模擬分析驗證與參數率定 95
4.1 FLAC簡介 95
4.2 PM4Sand參數說明 97
4.3 分析流程 102
4.4 單元素測試 104
4.4.1 剪力模數衰減與阻尼曲線分析 105
4.4.2 反覆單剪模擬 108
4.5 地盤反應分析驗證 112
4.5.1 均勻土層之彈性模型反應 113
4.5.2 分層土層之彈性與彈塑性模型反應 116
4.6 離心模型試驗模擬 122
4.6.1 柱狀元素模型自由場反應 122
4.6.2 完整離心模型試驗模擬 126
4.7 小結 130
第五章 FLAC模擬樁基礎結構物於液化地盤中受震反應分析 131
5.1 模型配置定義 131
5.1.1 目標結構系統設計 131
5.1.2 模型配置說明 135
5.2 人造地震 140
5.2.1 人造地震製作說明 140
5.2.2 人造地震列表 146
5.3 自由場模型受震反應分析 156
5.4 等效單樁模型分析結果與討論 160
5.4.1 土壤結構互制模型之動態受震反應分析 160
5.4.2 擬靜態側推分析結果 165
5.5 群樁模型分析結果與討論 182
5.5.1 土壤結構互制模型之動態受震反應分析 182
5.5.2 擬靜態側推分析結果 188
5.6 群樁模型輸入不同人造地震之分析結果討論與統計分析 223
5.6.1 動態受震分析結果 224
5.6.2 液化折減係數DE之探討 227
第六章 結論與建議 240
6.1 結論 240
6.2 建議 243
參考文獻 244
附錄A 非液化模型元素測試與樁土互制模型分析結果 253
附錄B 不同週期等效單樁基礎結構模型之分析結果 259
附錄C 單元素模型液化參數折減之單向剪動分析 268
附錄D 模型地盤土壤液化評估計算 270
附錄E 不同人造地震之液化與非液化模型分析結果 274
附錄F 不同震動事件之液化折減係數DE探討 347
參考文獻 [1] 內政部營建署,「建築物基礎構造物設計規範-第五章:樁基礎」,台灣,2001。
[2] 內政部營建署,「建築物耐震設計規範及解說-第十一章:其他耐震設計相關規定」,台灣,2011。
[3] 交通部,「公路橋梁耐震設計規範解說-第八章:有關耐震其他規定」,台灣,2019。
[4] 社團法人日本建築學會(AIJ),「建築基礎構造設計指針」,丸善出版社,日本,1988。
[5] 社團法人日本道路協會(JRA),「道路橋示方書‧同解說-V耐震設計篇」,丸善出版社,日本,1990。
[6] 社團法人日本道路協會(JRA),「道路橋示方書‧同解說-V耐震設計篇」,丸善出版社,日本,1996。
[7] 社團法人日本道路協會(JRA),「道路橋示方書‧同解說-V耐震設計篇」,丸善出版社,日本,2002。
[8] 李政鋼,「液化地盤離岸風機單樁基礎之離心模型試驗」,國立中央大學,碩士論文,2019。
[9] 吳宇浩,「液化地盤群樁基礎地震反應之模擬」,國立中央大學,碩士論文,2014。
[10] 呂振榮,「以動態離心試驗模擬可液化地盤中離岸風機單樁基礎之受震反應」,國立中央大學,碩士論文,2014。
[11] 岩崎敏男、長田賢一、木全俊雄,「地震時砂質地盤液化判定法與耐震設計相關研究」,土木研究所資料,第1729號,第99-108頁,1981。
[12] 財團法人鐵道綜合技術研究所,「鐵道構造物等設計標準‧同解說–耐震設計篇」,1999。
[13] 財團法人鐵道綜合技術研究所,「鐵道構造物等設計標準‧同解說–耐震設計篇」,2006。
[14] 財團法人國家實驗研究院國家地震工程研究中心,「臺灣規範反應譜查詢介面網頁」,網址:http://www.ncree.org/ZH/Design Spectra .aspx,(2014)。
[15] 陳正興、翁作新、黃俊鴻、林三賢、李維峰、蘇鼎鈞、謝旭昇、簡文郁、陳銘鴻、王淳讙、楊鶴雄、洪菁隆,「土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究(2/2)」,交通部報告,2005。
[16] 陳家漢,「以振動台試驗探討液化地盤中單樁受震樁土互制關係」,國立台灣大學,博士論文,2017。
[17] 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,國立中央大學,碩士論文,2011。
[18] 黃俊鴻,「液化地盤中樁基礎之耐震設計」,地工技術,第82期,第65-78頁,2000。
[19] 黃俊鴻、陳正興、莊長賢,「本土HBF土壤液化評估法之不確定性」,地工技術,第133期,第77~86頁,2012。
[20] 澤田亮、西村昭彦,「液状化地盤中の基礎構造物の挙動に関する実験的研究」,第24回地震工学研究発表会,第597-600頁,1997。
[21] 楊宗翰,「具不同上部結構之樁基礎受振行為」,國立中央大學,碩士論文,2016。
[22] 澤田亮,「液状化時の地盤反力係数の低減に関する一考察」,土木学会第58回年次学術講演会,第613-614,日本,2003。
[23] Abdoun, T., and Dobry, R., “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 1051-1058 (2002).
[24] Ashford, S. A., Boulanger, R. W., and Brandenberg, S. J., “Recommended Design Practice for Pile Foundations in Laterally Spreading Ground,” PEER Report (2011).
[25] Beaty, M. H., and Byrne P. M., “UBCSAND constitutive model version 904aR,” Documentation report: UBCSAND constitutive model on Itasca UDM Website (2011).
[26] Been, K., and Jefferies, M. G., “A state parameter for sands,” Geotechnique, Vol. 35, No. 2, pp. 99-112 (1985).
[27] Bolton, M. D., “The strength and dilatancy of sands,” Géotechnique, Vol. 36, No. 1, pp. 65-78 (1986).
[28] Boulanger, R. W., and Ziotopoulou, K., “Formulation of a sand plasticity plane-strain model for earthquake engineering applications,” Soil Dynamics and Earthquake Engineering, Vol.53, pp. 254-267 (2013).
[29] Boulanger, R. W., and Ziotopoulou, K., “PM4Sand (Version 3): A sand plasticity model for earthquake engineering applications,” Report No. UCD/CGM-15/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA (2015).
[30] Boulanger, R. W., and Ziotopoulou, K., “PM4Sand (version 3.1): A sand plasticity model for earthquake engineering applications,” University of California at Davis, Report No. UCD/CGM-17/01 (2018).
[31] Byrne, P. M., “A cyclic shear-volume coupling and pore pressure model for sand,” International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, No. 1.24, pp. 47-55 (1991).
[32] Carey, T. J., and Kutter, B. L., “Comparsion of liquefaction constitutive models for a hypothetical sand,” Geotechnical Frontiers, GSP 281, pp. 389-398 (2017).
[33] Casagrande, A., “Characteristics of cohesionless soils affecting the stability of slopes and earth fills,” Journal of the Boston society of civil engineer, pp. 257-276 (1936).
[34] Chau, K. T., Shen, C. Y., and Guo, X., “Nonlinear seismic soil–pile–structure interactions: Shaking table tests and FEM analyses,” Soil Dynamics and Earthquake Engineering, Vol. 29, pp. 300-310 (2009).
[35] Cheng, Z., “A practical 3D bounding surface plastic sand model for geotechnical earthquake engineering application,” Conference of Geotechnical Earthquake Engineering and Soil Dynamics V, Austin (2018).
[36] Choobbsati, A. J., and Zahmatkesh, A., “Computation of degradation factors of p-y curves in liquefiable soils for analysis of piles using three-dimensional finite-element model” Soil Dynamics and Earthquake Engineering, Vol. 89, pp. 61-74 (2016).
[37] Dafalias Y F, Manzari M T, “Simple plasticity sand model accounting for fabric change effects,” Journal of Engineering Mechanics, Vol. 130, No.6, pp. 622–634 (2004).
[38] Dafalias, Y., and Popov, E., “A model of nonlinearly hardening materials for complex loading,” Acta Mechanica, Vol. 21, No.3, pp. 173-192 (1975).
[39] Elgamal, A.-W., and Zeghal, M., "Analysis of Wildlife Site liquefaction during the 1987 Superstition Hills earthquake." Proc., 4th U.S.-Japan Workshop on Earthquake Resistant Des. of Lifeline Fac. and Countermeasures against Soil Liquefaction (Rep. No. NCEER-92-O019), M. Hamada and T. O′Rourke, eds., National Center for Earthquake Engineering Research, SUNY at Buffalo, Buffalo, N.Y., 87-96 (1992).
[40] Esfeh, P. K., and Kaynia, A. M., “Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures,” Soil Dynamics and Earthquake Engineering, Vol. 127, pp. 1-21 (2019).
[41] Hardin, B.O. & Richart, E.F.J., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE, vol. 89, No. SM1, pp. 33–65 (1963).
[42] Ishihara, K., Tatsuoka, F., and Yasuda, S., “Undrained deformation and liquefaction of sand under cyclic stresses,” Soils Found, Vol. 15, No. 1, pp. 29-44 (1975).
[43] Itasca Consulting Group Inc., “Fast Lagrangian Analysis of Continua in 2 Dimensions manual,” Minneapolis, Minn (2012).
[44] Itasca., “FLAC – Fast Lagrangian Analysis of Continua,” Itasca Consulting Group, Inc., Minneapolis, Minnesota (2011).
[45] Klar, A., and Frydman, S., “Three-dimensional analysis of lateral pile response using two-dimensional explicit numerical scheme,” Journal of Geotechnical and Geoenvironmental engineering, Vol. 128, No. 9, pp. 775-784 (2002).
[46] Kuhlemeyer, R. L., and Lysmer, J., “Finite element method accuracy for wave propagation problems,” Journal of the Soil Mechanics and Foundations Division, Vol. 99, No. 5, pp. 421-427 (1973).
[47] Kramer, S. L., “Geotechnical earthquake engineering,” Prentice Hall, Upper Saddle River, N.J (1996).
[48] Krieg, R., “A practical two surface plasticity theory,” Journal of applied mechanics, ASME, Vol. 42, pp. 641-646 (1975).
[49] Lee, C. J., Wang, C. R., and Wei, Y. C., “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bull Earthquake Eng., Vol. 10, pp. 401-420 (2012).
[50] Li, X. S., and Dafalias, T. F., “Dilatancy for cohesionless soils,” Geotechnique, Vol. 50, No. 4, pp. 449-460 (2000).
[51] Li, X. S., and Wang, Y., “Linear representation of steady-state line for sand,” J. Geotech. Geoenviron. Eng., Vol. 124, No. 12 , pp. 1215-1217 (1998).
[52] Liyanapathirana, D. S., and Poulos, F. G., “Pseudostatic Approach for Seismic Analysis of Piles in Liquefying Soil,” J. Geotech. Geoenviron. Eng., Vol. 131, No. 12, pp. 1480-1487 (2005).
[53] Manzari, M. T., and Dafalias, Y. F., “A two-surface critical plasticity model for sand,” Geotechnique, Vol.47 (2), pp. 255-272 (1997).
[54] Martin, G. R., Finn, W. L., and Seed, H. B. “Fundamentals of liquefaction under cyclic loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 101, No.GT5, pp. 423-438 (1975).
[55] Mogami, T., and Kubu, K., “The behavior of soil during vibration,” Proceedings of 3rd International conference on soil mechanics and foundation engineering, Zurich, Vol.1, pp. 152-155 (1953).
[56] Mohanty, P., Dutta, S.C., and Bhattacharya, S., “Proposed mechanism for mid-span failure of pile supported river bridges during seismic liquefaction,” Soil Dynamics and Earthquake Engineering, UK, Vol. 102, pp 41-45 (2017).
[57] Nemat-Nasser, S., “On behavior of granular material in simple shear,” Soils Found., Vol. 20, No. 3, pp. 59-73 (1980).
[58] Nemat-Nasser, S., and Tobita, Y., “Influence of fabric on liquefaction and densification potential of cohsionless snad,” Mech. Mater., Vol. 1, pp. 43-62 (1982).
[59] Olsen, R. S., “ Cyclic Liquefaction Based on the Cone Penetrometer Test,” In Proceedings of the 1996 NCEER Workshop on Evaluation of Liquefaction Resistance of Soil. NCEER-97-0022. pp. 225-275 (1997).
[60] Park, S. S. and Byrne, P. M., “Stress densification and its evaluation,” Canadian Geotechnical Journal, Vol. 41 pp. 181-186 (2004).
[61] Richart, F. E., Jr., Hall, J. R., and Woods, R. D., “Vibration of soils and foundations,” International series in theoretical and applied mechanics, Prentice-Hall, Englewood Cliffs, N.J. (1970).
[62] Robertson, PK (2009). “Interpretation of cone penetration tests – a unified approach,” Canadian Geotech. J., 46(11):1337–1355.
[63] Rowe, P. W., “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact,” Proc. R. Soc. London, Ser. A, Vol. 269, pp. 500-527 (1962).
[64] Seed, H. B., Idriss, I. M., Makdisi, F., and Banerjee, N. “Representation of, irregular stress time histories by equivalent uniform stress series in liquefaction analysis.” Rep. No. EERC 75-29, Earthquake Engineering Research Center, College of Engineering, Univ. of California, Berkeley, Calif (1975).
[65] Seed, H.B., Yokimatsu, K., Harder, L.F., and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, ASCE, Vol.111, No. 12, pp.1425-1445 (1985).
[66] Seed, H. B. and Idriss, I. M., “Soil moduli and damping factors for dynamic response analyses,” Report No.EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, California, (1970).
[67] Shibata, T., and Teparaksa, W., “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soils and Foundations, Vol. 28, No. 2 pp. 49-60 (1988).
[68] Tamura, K., Ninomiya, Y., and Hamada, T., “Estimation of effects of liquefaction-induced ground flow on bridge foundations,” 28th Joint Meeting, US-Japan Panel on Wind and Seismic Effects, UJNR, pp. 72-79 (1996).
[69] Tempel, J. V., “Design of Support Structures for Offshore Wind Turbines,” Ph. D thesis, Delft University of Technology, Delft, the Netherlands (2006).
[70] Tokimatsu, K. and Yoshimi, Y., “Effects of vertical drains on the bearing capacity of saturated sand during earthquakes,” Proc. International conference on engineering for protection from natural disasters, pp. 643~655 (1980).
[71] Tokimatsu, K., “Behavior and design of pile foundations subjected to earthquakes,” 12th Asian regional Conf. on soil mechanics & geotechnical engineering, pp. 1065-1096 (2004).
[72] Tokimatsu, K. and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based SPT N-Value and Fines Content,” Soils and Foundations, JSSMFE, Vol.23, No. 4, pp.56-74 (1983).
[73] Tokimatsu, K., and Uchida, A., “Correlation between liquefaction resistance and shear wave velocity,” Soils and foundations, Vol. 30, No. 2, pp. 33-42 (1990).
[74] Tokimatsu, K., “Behavior and design of pile foundations subjected to earthquake,” Keynote speech, 12th Asia Regional Coference on Soil Mechanics and Geotechnical Engineering, Singapore, 2, pp. 1065-1096 (2003).
[75] Wilson, D. W., Boulanger, R. W. and Kutter, B. L., “Observed seismic lateral resistance of liquefying sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 10, pp. 898-906 (2000).
[76] Yao, S., Kobayashi, K., Yoshida, N., and Matsuo, H., “Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 397-409 (2004).
[77] Youd, T. L., Idriss, I.M., “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” J. Geotech. And Geoenvir. Engrg., ASCE, Vol. 127, No. 10, pp. 817‐833 (2001).
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2021-3-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明