博碩士論文 105384002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.135.213.214
姓名 曾讚憲(Tsan-Hsien Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新式抗大氣腐蝕之表面處理層開發並應用於高可靠度元件
(Development of Newest Anti-corrosion Surface Finish for High Reliability Devices)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 鑒於空氣汙染日益嚴重,許多酸性汙染物溶於水氣後破壞建築物、電子元件等。現今印刷電路板常用之表面處理層,如化鎳金(ENIG)、化銀(ImAg)與化錫(ImSn)等已不敷使用在高可靠度電子元件,故須開發新式表面處理層。本研究利用鈷系無電鍍金屬層作為新式表面處理層,分別有化鈷(EC)與化鈷金錫(ECIGS),並比較商用化鎳金、化錫等表面抗大氣腐蝕之能力。在日常大氣腐蝕中,以含硫氣氛為影響最嚴重之因素,故本研究利用不同濃度之二氧化硫氣體通入自製氣密瓶中模擬含硫氣氛並將試片置放於其中,此外,為加速腐蝕反應的發生,實驗溫度設定為80 oC及相對溼度為100% RH。通過48與120小時的曝氣實驗分析表面處理鍍層的抗腐蝕能力,並藉由分析表面腐蝕物推測各鍍層之腐蝕機制。經過濃度為15 ppm放置48與120小時後,各試片皆無明顯腐蝕物產生,故本研究將濃度提升至1500 ppm並一樣放置48與120小時。在曝氣48小時後,化鎳金表面產生大量腐蝕物,化鈷錫表面出現些許腐蝕物,而化錫表面無明顯腐蝕物產生,化鈷表面僅出現些許裂痕。當曝氣時間提升至120小時後,化鎳金與化鈷表面分別產生大量氣泡狀與片狀腐蝕物,化錫與化鈷錫表面也些許產生花瓣狀腐蝕物,經元素分析後發現表面僅化鈷錫沒有出現與銅相關之腐蝕物,藉此推斷在此環境下化鈷錫具有最佳的抗腐蝕能力。為了探討各試片之電化學特性,將各試片浸入0.5 M硫酸水溶液後,進行Tafel。結果顯示在硫酸環境下,ECIGS都具有最好的穩定性。經過電化學動力學計算電子轉移係數後,EC最不容易在具正過電位下發生氧化反應,故新研發之ECIGS具有良好抗腐蝕之特性,並具有應用於提升高可靠度元件之耐候性潛力。
摘要(英) Amounts of corrosive gas affect the reliability of electronic devices. In order to prevent corrosion reaction on automobile printed circuit broads (PCBs), surface finish is adopted to protect the surface of PCBs. In this investigation, PCBs were coated several metallic thin films on the surface, such as electroless nickel immersion gold (ENIG), immersion tin (ImSn), electroless cobalt (EC), and electroless cobalt immersion gold immersion tin (ECIGS). The air-tight clave, pumping the SO2 gas, was utilized to explore the anticorrosion capability and the corrosion products for samples. The concentration of SO2 gas was either 15 or 1500 ppm at 80 oC for 48 and 120 h. The humidity was processed with 100% relative humidity (RH) to confirm the water-film on the surface. Negligible corrosion products formed on the surface after 15 ppm SO2 for 48 and 120 h. The multiple corrosion products formed and covered whole sample on the ENIG surface after 1500 ppm SO2 for 48 h. At the same condition, corrosion products some grew on the ECIGS surface. In addition, slight corrosion products formed on the ImSn and EC after 1500 ppm SO2 for 48 h. When exposed time increased to 120 h, the corrosion products covered whole the ENIG and EC samples. Additionally, Cu signals was observed on the corrosion products for ENIG, ImSn, and EC but not on the ECIGS. The surface finishes also were investigated by electrochemical analyses such as Tafel test. According to Tafel curve, ECIGS was stable coating in this investigation. The results of transfer coefficient showed that reduction reaction dominated when EC sample immersed in the 0.5 M H2SO4. The ECIGS exhibited the effective anticorrosion capability for high reliability device in this investigation.
關鍵字(中) ★ 大氣腐蝕
★ 金屬表面處理層
★ 車用電子元件
★ 電化學分析
★ 無電鍍製程
★ 化鈷金錫
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
Contents V
List of Figures VIII
List of Tables XIII
Explanation of Symbols XIV
Chapter 1 Introduction 1
1-1 Background 1
1-2 Surface Finish 3
1-2-1 ImAg Surface Finish 3
1-2-3 ENIG Surface Finish 4
1-2-4 ImSn Surface Finish 6
1-3 Gaseous Corrosion 6
1-3-1 Humidity 7
1-3-2 Sulfur-containing Pollutions 7
1-3-3 Nitrate-containing Pollutions 8
1-3-4 Chlorine-containing Pollutions 8
1-3-5 The Standard of Gaseous Corrosion 10
1-4 Common Failure Issue and Corrosion Phenomena for Surface Finishes 12
1-4-1 ImAg Surface Finish 12
1-4-2 ENIG Surface Finishes 15
1-4-3 ImSn Surface Finish 20
1-5 Electrochemistry Property 24
Chapter 2 Motivation 27
Chapter 3 Experimental Procedure 28
3-1 Sample Preparing 28
3-2 Gaseous Corrosion Test 30
3-3 Corrosion Products Analysis 31
3-4 Electrochemical Property Analysis 31
Chapter 4 Results and Discussion 33
4-1 As-received sample 33
4-2 The Influence of Humidity 35
4-3 Gaseous Corrosion of ENIG 38
4-3-1 Surface Morphology after Corrosion 38
4-3-2 Corrosion Products Analysis 38
4-3-3 Corrosion Mechanism of ENIG 39
4-4 Gaseous Corrosion of ImSn 46
4-4-1 Surface Morphology after Corrosion 46
4-4-2 Corrosion Products Analysis 46
4-4-3 Corrosion Mechanism of ImSn 47
4-5 Gaseous Corrosion of EC 53
4-5-1 Surface Morphology after Corrosion 53
4-5-2 Corrosion Products Analysis 53
4-5-3 Corrosion Mechanism of EC 54
4-6 Gaseous Corrosion of ECIGS 61
4-6-1 Surface Morphology after Corrosion 61
4-6-2 Corrosion Products Analysis 61
4-6-3 Corrosion Mechanism of ECIGS 62
4-7 Electrochemical Property of Surface Finishes 67
4-7-1 Tafel Curve 67
4-7-2 Corrosion Area 73
Chapter 5 Conclusion 76
Reference 78
參考文獻 [1] K. Dellios, C. Patsakis, and D. Polemi, "Automobile 2.0: Reformulating the Automotive Platform as an IT System", It Professional, Vol, 18, pp. 48-56, 2016.
[2] M.S. H. J. Heider, C. Schlegel, and K. Stricker, An Autonomous Car Roadmap for Suppliers, Bain & Company, 2017.
[3] 廖學隆, 楊家豪, and 黃隆洲, 車輛電子產業的現況與未來發展, 財團法人車輛中心, 2013.
[4] A.S.B. Smith, S. Modi, and T. Fiorelli, Technology Roadmaps: Intelligent Mobility Technology, Materials and Manufacturing Processes, and Light Duty Vehicle Propulsion, Center for Automotive Research, 2017.
[5] J. McGregor, 2020 Automotive Roadmap For Autonomous Vehicles, Intel, 2017.
[6] C. Leygraf, I.O. Wallinder, J. Tidblad et al., Atmospheric corrosion: John Wiley & Sons, 2016.
[7] W.Q. Wang, A. Choubey, M.H. Azarian et al., "An Assessment of Immersion Silver Surface Finish for Lead-Free Electronics", Journal of Electronic Materials, Vol, 38, pp. 815-827, 2009.
[8] I.-R. WP5D, Minimum requirements related to technical performance for IMT-2020 radio interface (s), 2017.
[9] X. Wu, D. Cullen, G. Brist et al., "Surface finish effects on high-speed signal degradation", Ieee Transactions on Advanced Packaging, Vol, 31, pp. 182-189, 2008.
[10] P. Sahoo and S.K. Das, "Tribology of electroless nickel coatings–a review", Materials & Design, Vol, 32, pp. 1760-1775, 2011.
[11] G. Milad and R. Mayes, "Electroless nickel/immersion gold finishes for application to surface mount technology: A regenerative approach", Metal finishing, Vol, 1, pp. 42+ 44-46, 1998.
[12] J.S. Kang, Y.S. Lee, and J.H. Lee, "Effects of Bath Composition and P Contents on the Defects of NiP Layer in Electroless Nickel Immersion Gold Process", Journal of nanoscience nanotechnology, Vol, 19, pp. 4287-4291, 2019.
[13] C. Tien-Ming, Heat Treatment of Electroless Nickel Plated Low Carbon Steel, Department of Materials and Manufacturing Engineering, Feng Chia University, 2003, p. 143.
[14] P.S. Kumar and P.K. Nair, "Studies on crystallization of electroless Ni/P deposits", Journal of Materials Processing Technology, Vol, 56, pp. 511-520, 1996.
[15] M. Erming, L. Shoufu, and L. Pengxing, "A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings", Thin Solid Films, Vol, 166, pp. 273-280, 1988.
[16] N.M. Martyak, "Characterization of thin electroless nickel coatings", Chemistry of materials, Vol, 6, pp. 1667-1674, 1994.
[17] K. Keong, W. Sha, and S. Malinov, "Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content", Journal of Alloys and Compounds, Vol, 334, pp. 192-199, 2002.
[18] C. Loto, "Electroless nickel plating–a review", Silicon, Vol, 8, pp. 177-186, 2016.
[19] E. Vafaei-Makhsoos, E.L. Thomas, and L.E. Toth, "Electron microscopy of crystalline and amorphous Ni-P electrodeposited films: In-situ crystallization of an amorphous solid", Metallurgical Transactions A, Vol, 9, pp. 1449-1460, 1978.
[20] Q. Mai, R. Daniels, and H. Harpalani, "Structural changes induced by heating in electroless nickel-phosphorus alloys", Thin Solid Films, Vol, 166, pp. 235-247, 1988.
[21] F.J. Chen, S. Yan, and Z.G. Yang, "Failure analysis on electrolytic Ni/Au surface finish of PCB used for wire bonding and soldering", Solder. Surf. Mt. Technol., Vol, 26, pp. 180-193, 2014.
[22] E. Huttunen-Saarivirta, "Observations on the uniformity of immersion tin coatings on copper", Surf. Coat. Technol., Vol, 160, pp. 288-294, 2002.
[23] E. Huttunen-Saarivirta and T. Tiainen, "Autocatalytic tin plating in the fabrication of tin-coated copper tube", Journal of Materials Processing Technology, Vol, 170, pp. 211-219, 2005.
[24] A. Arazna, A. Krolikowski, G. Koziol et al., "The corrosion characteristics and solderability of immersion tin coatings on copper", Mater Corros, Vol, 64, pp. 914-925, 2013.
[25] P. Keller, Dissertation, 2007.
[26] M. Arra, D. Shangguan, D.J. Xie et al., "Study of immersion silver and tin printed-circuit-board surface finishes in lead-free solder applications", Journal of Electronic Materials, Vol, 33, pp. 977-990, 2004.
[27] B. Conway and J.O.M. Bockris, "Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal", The Journal of Chemical Physics, Vol, 26, pp. 532-541, 1957.
[28] L.I. Krishtalik, "The hydrogen overpotential-hydrogen adsorption energy relationship. A new approach to the problem", Electrochimica Acta, Vol, 218, pp. 125-132, 2016.
[29] H. Ezaki, M. Morinaga, and S. Watanabe, "Hydrogen overpotential for transition-metals and alloys, and its interpretation using an electronic model", Electrochimica Acta, Vol, 38, pp. 557-564, 1993.
[30] M. Miles and M. Thomason, "Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies", Journal of The Electrochemical Society, Vol, 123, pp. 1459-1461, 1976.
[31] I.f.I.a.P.E. Circuits, Specification for Immersion Tin Plating for Printed Circuit Boards, 2007.
[32] J.-E. Svensson and L.-G. Johansson, "A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc", Journal of the Electrochemical Society, Vol, 140, pp. 2210-2216, 1993.
[33] H. Strandberg and L.G. Johansson, "The formation of black patina on copper in humid air containing traces of SO2", Journal of the Electrochemical Society, Vol, 144, pp. 81-89, 1997.
[34] G. Vogel, "Creeping corrosion of copper on printed circuit board assemblies", Microelectronics Reliability, Vol, 64, pp. 650-655, 2016.
[35] M.C. Li, H. Zhang, R.F. Huang et al., "Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers", Corrosion Science, Vol, 80, pp. 96-103, 2014.
[36] G. Giovannelli, S. Natali, L. Zortea et al., "An investigation into the surface layers formed on oxidised copper exposed to SO2 in humid air under hypoxic conditions", Corrosion Science, Vol, 57, pp. 104-113, 2012.
[37] A. Galtayries, J. Grimblot, and J.P. Bonnelle, "Interaction of SO2 with different polycrystalline Cu, Cu2O and CuO surfaces", Surface Interface Analysis: An International Journal devoted to the development application of techniques for the analysis of surfaces, interfaces thin films, Vol, 24, pp. 345-354, 1996.
[38] C. Kleber and M. Schreiner, "Multianalytical in-situ investigations of the early stages of corrosion of copper, zinc and binary copper/zinc alloys", Corrosion Science, Vol, 45, pp. 2851-2866, 2003.
[39] G. Giovannelli, S. Natali, L. Zortea et al., "An investigation into the surface layers formed on elemental zinc and oxidised α-copper–zinc alloys exposed to SO2 in humid air under hypoxic conditions", Corrosion Science, Vol, 88, pp. 466-472, 2014.
[40] M.N. Ingalls and K.J. Springer, Measurement of sulfate and sulfur dioxide in automotive exhaust, United States Environmental Protection Agency, National Service Center for Environmental Publications, 1976.
[41] B.N. Popov, Corrosion engineering: principles and solved problems: Elsevier, 2015.
[42] E. Bardal, Corrosion and protection: Springer Science & Business Media, 2007.
[43] X. Cao, N. Wang, and N. Liu, "Synergistic effect of chloride and NO2 on the atmospheric corrosion of bronze", Anti-Corros. Methods Mater., Vol, 56, pp. 299-305, 2009.
[44] J.-E. Svensson and L.-G. Johansson, "A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2", Corrosion science, Vol, 34, pp. 721-740, 1993.
[45] F. Samie, J. Tidblad, V. Kucera et al., "Atmospheric corrosion effects of HNO3 - Comparison of laboratory-exposed copper, zinc and carbon steel", Atmos. Environ., Vol, 41, pp. 4888-4896, 2007.
[46] F. Samie, J. Tidblad, V. Kucera et al., "Atmospheric corrosion effects of HNO3 - method development and results on laboratory-exposed copper", Atmos. Environ., Vol, 39, pp. 7362-7373, 2005.
[47] S. Feliu, L. Mariaca, J. Simancas et al., "X-ray photoelectron spectroscopy study of the effect of nitrogen dioxide and sulfur dioxide on the atmospheric corrosion of copper at low relative humidity values", Corrosion, Vol, 61, pp. 627-638, 2005.
[48] X.R. Li, X.T. Wang, L.Y. Wang et al., "Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl", J. Mater. Eng. Perform., Vol, 28, pp. 2327-2334, 2019.
[49] Y.T. Ma, Y. Li, and F.H. Wang, "Corrosion of low carbon steel in atmospheric environments of different chloride content", Corrosion Science, Vol, 51, pp. 997-1006, 2009.
[50] X. Zhang, I.O. Wallinder, and C. Leygraf, "Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments", Corrosion Science, Vol, 85, pp. 15-25, 2014.
[51] T. Graedel, K. Nassau, and J. Franey, "Copper patinas formed in the atmosphere—I. Introduction", Corrosion Science, Vol, 27, pp. 639-657, 1987.
[52] K. Xiao, X. Gao, L.D. Yan et al., "Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: Salty dust and diurnal temperature difference", Chem. Eng. J., Vol, 336, pp. 92-101, 2018.
[53] T.Q. Wu, Z.F. Zhou, S. Xu et al., "A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation", Engineering Failure Analysis, Vol, 98, pp. 83-94, 2019.
[54] E.I. Alliance, Mixed Flowing Test Procedure For Electrical Connectors Contacts And Sockets from SAI Global, 2009.
[55] I.E. Commission, Environmental testing - Part 2-60: Tests - Test Ke: Flowing mixed gas corrosion test, 2015.
[56] I.S.o. America, ISA-71.04-2013 Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants, 2013.
[57] C. Gabrielli, L. Beitone, C. Mace et al., "Electrochemistry on microcircuits. II: Copper dendrites in oxalic acid", Microelectronic Engineering, Vol, 85, pp. 1686-1698, 2008.
[58] B. Rudra and D. Jennings, "Failure-mechanism models for conductive-filament formation", IEEE Trans. Reliab., Vol, 43, pp. 354-360, 1994.
[59] W.J. Ready and L.J. Turbini, "The effect of flux chemistry, applied voltage, conductor spacing, and temperature on conductive anodic filament formation", Journal of Electronic Materials, Vol, 31, pp. 1208-1224, 2002.
[60] O. Devos, C. Gabrielli, L. Beitone et al., "Growth of electrolytic copper dendrites. II: Oxalic acid medium", J. Electroanal. Chem., Vol, 606, pp. 85-94, 2007.
[61] P. Yi, K. Xiao, C.F. Dong et al., "Effects of mould on electrochemical migration behaviour of immersion silver finished printed circuit board", Bioelectrochemistry, Vol, 119, pp. 203-210, 2018.
[62] T. Graedel, "Corrosion mechanisms for silver exposed to the atmosphere", Journal of the Electrochemical Society, Vol, 139, pp. 1963-1970, 1992.
[63] K.K. Ding, X.G. Li, K. Xiao et al., "Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films", Trans. Nonferrous Met. Soc. China, Vol, 25, pp. 2446-2457, 2015.
[64] S.N. Zhang, M. Osterman, A. Shrivastava et al., "The Influence of H2S Exposure on Immersion-Silver-Finished PCBs Under Mixed-Flow Gas Testing", Ieee Transactions on Device and Materials Reliability, Vol, 10, pp. 71-81, 2010.
[65] A.J. Bard, L.R. Faulkner, J. Leddy et al., Electrochemical methods: fundamentals and applications, vol, 2: wiley New York, 1980.
[66] K. Zeng, R. Stierman, D. Abbott et al., "Root cause of black pad failure of solder joints with electroless nickel/immersion gold plating," Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006. pp. 1111-1119, 2006.
[67] P. Snugovsky, P. Arrowsmith, and M. Romansky, "Electroless Ni/immersion Au interconnects: Investigation of Black Pad in wire bonds and solder joints", Journal of Electronic Materials, Vol, 30, pp. 1262-1270, 2001.
[68] J. Yu and K. Kim, "Effects of Under Bump Metallurgy (UBM) Materials on the Corrosion of Electroless Nickel Films", Metall Mater Trans A, Vol, 46A, pp. 3173-3181, 2015.
[69] J.H. Kim and J. Yu, "Black Pad Susceptibility of the Electroless Ni Films on the Cu UBM", Journal of Electronic Materials, Vol, 43, pp. 4335-4343, 2014.
[70] K.H. Kim, J. Yu, and J.H. Kim, "A corrosion couple experiment reproducing the black pad phenomenon found after the electroless nickel immersion gold process", Scripta Materialia, Vol, 63, pp. 508-511, 2010.
[71] B.K. Kim, S.J. Lee, J.Y. Kim et al., "Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process", Journal of Electronic Materials, Vol, 37, pp. 527-534, 2008.
[72] D. Kim and J.J. Pak, "Micro void growth in NiSnP layer between (Cu, Ni)6Sn5 intermetallic compound and Ni3P by higher reflow temperature and multiple reflow", Journal of Materials Science: Materials in Electronics, Vol, 21, pp. 1337-1345, 2010.
[73] H. Fu, D. Lee, J. Lee et al., "Creep Corrosion Failure Analysis on ENIG Printed Circuit Boards," Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015 10th International pp. 124-129, 2015.
[74] P. Zhao and M. Pecht, "Field failure due to creep corrosion on components with palladium pre-plated leadframes", Microelectronics Reliability, Vol, 43, pp. 775-783, 2003.
[75] E. Salahinejad, R.E. Farsani, and L. Tayebi, "Synergistic galvanic-pitting corrosion of copper electrical pads treated with electroless nickel-phosphorus/immersion gold surface finish", Engineering Failure Analysis, Vol, 77, pp. 138-145, 2017.
[76] K.J. Zeng, R. Stierman, T.C. Chiu et al., "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability", Journal of Applied Physics, Vol, 97, p. 8, 2005.
[77] K.N. Tu and J.C.M. Li, "Spontaneous whisker growth on lead-free solder finishes", Mat Sci Eng a-Struct, Vol, 409, pp. 131-139, 2005.
[78] K.N. Tu, "Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions", Physical Review B, Vol, 49, pp. 2030-2034, 1994.
[79] W.J. Choi, T.Y. Lee, K.N. Tu et al., "Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction", Acta Materialia, Vol, 51, pp. 6253-6261, 2003.
[80] K. Hannigan, M. Reid, M.N. Collins et al., "Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments", Journal of Electronic Materials, Vol, 41, pp. 611-623, 2012.
[81] L. Magagnin, V. Sirtori, S. Seregni et al., "Electroless Co-P for diffusion barrier in Pb-free soldering", Electrochimica Acta, Vol, 50, pp. 4621-4625, 2005.
[82] N. Tsyntsaru, G. Kaziukaitis, C. Yang et al., "Co-W nanocrystalline electrodeposits as barrier for interconnects", J. Solid State Electrochem., Vol, 18, pp. 3057-3064, 2014.
[83] M.W. Liang, H.T. Yen, and T.E. Hsieh, "Investigation of electroless cobalt-phosphorous layer and its diffusion barrier properties of Pb-Sn solder", Journal of Electronic Materials, Vol, 35, pp. 1593-1599, 2006.
[84] M. Paunovic, P.J. Bailey, R.G. Schad et al., "Electrochemically Deposited Diffusion-Barriers", Journal of the Electrochemical Society, Vol, 141, pp. 1843-1850, 1994.
[85] C.H. Wang and S.W. Chen, "Sn/Co solid/solid interfacial reactions", Intermetallics, Vol, 16, pp. 524-530, 2008.
[86] G.Y. Jang, J.W. Lee, and J.G. Duh, "The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump", Journal of Electronic Materials, Vol, 33, pp. 1103-1110, 2004.
[87] H.C. Pan and T.E. Hsieh, "Diffusion Barrier Characteristics of Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder", Journal of the Electrochemical Society, Vol, 158, pp. P123-P129, 2011.
[88] H. Chen, Y.L. Tsai, Y.T. Chang et al., "Effect of massive spalling on mechanical strength of solder joints in Pb-free solder reflowed on Co-based surface finishes", Journal of Alloys and Compounds, Vol, 671, pp. 100-108, 2016.
[89] D. Seifzadeh and L. Farhoudi, "Electroless Co–P plating on magnesium alloy and its anti-corrosion properties", Surface Engineering, Vol, 32, pp. 348-355, 2016.
[90] Y. Song, D. Shan, and E. Han, "Comparative study on corrosion protection properties of electroless Ni‐P‐ZrO2 and Ni‐P coatings on AZ91D magnesium alloy", Materials and Corrosion, Vol, 58, pp. 506-510, 2007.
[91] Y.R. Kolobov, G. Grabovetskaya, M. Ivanov et al., "Grain boundary diffusion characteristics of nanostructured nickel", Scripta materialia, Vol, 6, pp. 873-878, 2001.
[92] C.Y. Lee and K.L. Lin, "The interaction kinetics and compound formation between electroless Ni/P and solder", Thin solid films, Vol, 249, pp. 201-206, 1994.
[93] K.L. Lin and K.T. Hsu, "Manufacturing and materials properties of Ti/Cu/Electroless Ni/Solder bump on Si", Ieee Transactions on Components and Packaging Technologies, Vol, 23, pp. 657-660, 2000.
[94] K.L. Lin and J.W. Hwang, "Effect of crystallinity and thickness on the diffusion barrier behavior of electroless nickel deposit between Cu and solder", Ieee Transactions on Advanced Packaging, Vol, 25, pp. 509-513, 2002.
[95] H. Tompkins and M. Pinnel, "Relative rates of nickel diffusion and copper diffusion through gold", Journal of Applied Physics, Vol, 48, pp. 3144-3146, 1977.
[96] J.A. Dean, Lange′s handbook of chemistry: New york; London: McGraw-Hill, Inc., 1999.
[97] V.K. Murugan, Z. Jia, G.J. Syaranamual et al., "Atmospheric corrosion resistance of electroplated Ni/Ni–P/Au electronic contacts", Microelectronics Reliability, Vol, 60, pp. 84-92, 2016.
[98] D. Hillman and L. Chumbley, "Characterization of tin oxidation products using sequential electrochemical reduction analysis (SERA)", Soldering surface mount technology, Vol, 18, pp. 31-41, 2006.
[99] R.A. Perkins, "Internal oxidation of lead-tin alloys", Oxidation of Metals, Vol, 9, pp. 127-136, 1975.
[100] J.F. Kuhmann, K. Maly, A. Preuss et al., "Oxidation and reduction of liquid SnPb (60/40) under ambient and vacuum conditions", Journal of the Electrochemical Society, Vol, 145, pp. 2138-2142, 1998.
[101] S. Britton and J. Sherlock, "Examination of oxides on tin surfaces by cathodic reduction", British Corrosion Journal, Vol, 9, pp. 96-102, 1974.
[102] B. Stirrup and N. Hampson, "Electrochemical reactions of tin in aqueous electrolytic solutions", Surface Technology, Vol, 5, pp. 429-462, 1977.
[103] P. Simon, N. Bui, N. Pebere et al., "Characterization by electrochemical impedance spectroscopy of passive layers formed on lead-tin alloys, in tetraborate and sulfuric acid solutions", Journal of power sources, Vol, 55, pp. 63-71, 1995.
[104] K.N. Tu, "Interdiffusion and reaction in bimetallic Cu-Sn thin films", Acta Metallurgica, Vol, 21, pp. 347-354, 1973.
[105] B. Dyson, T. Anthony, and D. Turnbull, "Interstitial diffusion of copper in tin", Journal of Applied Physics, Vol, 38, pp. 3408-3408, 1967.
[106] A. Kohn, M. Eizenberg, and Y. Shacham-Diamand, "Copper grain boundary diffusion in electroless deposited cobalt based films and its influence on diffusion barrier integrity for copper metallization", Journal of Applied Physics, Vol, 94, pp. 3015-3024, 2003.
[107] L. Magagnin, V. Sirtori, S. Seregni et al., "Electroless Co–P for Diffusion Barrier in Pb-Free Soldering", Electrochimica acta, Vol, 50, pp. 4621-4625, 2005.
[108] H. Jung and A. Alfantazi, "An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co–P alloy in 0.1 M H2SO4 solution", Electrochimica Acta Vol, 51, pp. 1806-1814, 2006.
[109] V. Ezhilselvi, H. Seenivasan, P. Bera et al., "Characterization and corrosion behavior of Co and Co–P coatings electrodeposited from chloride bath", RSC Advances, Vol, 4, pp. 46293-46304, 2014.
[110] N. Petrov, Y. Sverdlov, and Y. Shacham-Diamand, "Electrochemical study of the electroless deposition of Co (P) and Co (W, P) alloys", Journal of the Electrochemical Society, Vol, 149, pp. C187-C194, 2002.
[111] J. Chivot, L. Mendoza, C. Mansour et al., "New insight in the behaviour of Co–H2O system at 25–150 oC, based on revised Pourbaix diagrams", Corrosion Science, Vol, 50, pp. 62-69, 2008.
[112] F. Huang, Y. Liao, J. Zhou et al., "Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution", Separation Purification Technology, Vol, 156, pp. 572-581, 2015.
[113] K.J. Vetter, Electrochemical kinetics: theoretical aspects: Elsevier, 1967.
[114] E. Gileadi, Electrode kinetics for chemists, chemical engineers, and materials scientists: Capstone, 1993.
指導教授 吳子嘉 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明