博碩士論文 105385001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.147.103.202
姓名 陳致霖(Chih-Lin Chen)  查詢紙本館藏   畢業系所 土木系營建管理博士班
論文名稱 運用組織特徵映射圖動作軌跡相似度測量法探索預鑄工項生產效率與資源規劃之研究
(Exploring productivity and resource allocation for construction precast compomements using SOMMTS)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 國內預鑄產業最近面臨著三大挑戰,缺乏資源分配活動之間的邏輯關係、難以確定複雜構件的優先次序及因勞工密集加班而導致人力成本不斷增加。本研究之目的(1)利用約略集合理論增強K-近鄰演算法(Rough-set enhanced KNN)對預鑄結構體大樑、小樑及柱等14個生產工項的關鍵項目進行探索;(2)透過基於自我組織特徵映射圖之動作軌跡相似度測量法(SOMMTS)確定專案資源項目複雜度;(3)利用Arena模擬建立工人生產人力成本預測模型。
在綜合文獻回顧的基礎上,專家訪談提出了五個主要假設,包含按工作訂單成本法計算成本、合理的人力成本範圍、加班小時費率的範圍、加班生產進度庫存及生產力評估方式。本研究依構件類型彙集出臺灣近10年來共有55,157根預鑄構件生產數量,並蒐集預鑄生產數據的總體情況,包含專案資源項目、每月工人加班成本及工項生產時間等數據。
本研究之結論共分為三項:(1)透過約略集合理論增強K-近鄰演算法(Rough-set enhanced KNN)分別識別了大樑、小樑及柱構件生產的5個、7個及3個關鍵生產項目,以作為影響預鑄構件生產效率之決策因子;(2)利用基於自我組織特徵映射圖之動作軌跡相似度測量法(SOMMTS)為所有專案類型的預鑄構件生產提供了3個複雜度級別;(3)透過Arena系統模擬降低6.9%總生產人力成本。本研究之成果使決策者能針對預鑄廠各項資源規畫提供最佳化配置之參考依據。
摘要(英) Construction precast factories have recently faced three major challenges of lack of logical relationships among activities to allocate resources, difficulties to identify priorities for complex components, and cost saving on worker fee due to intensive overtime. The research objectives are (1) to explore the key activities among 14 activities using rough set enhanced k-mean nearest neighbor (KNN), (2) to determine component complexity using SOM-based motion trajectory similarity measure (SOMMTS), and (3) to establish a prediction model for worker costs using Arena simulation. Based on a comprehensive literature review, the expert interviews suggest five major assumptions involving cost calculation by job order costing method, reasonable manpower cost range, range for overtime hourly rates, inventory availability by work overtime, and ignorance for individual difference. Expertise also gives us an overall picture to collect production data including activity sequences, activity duration in minutes, and worker wage in hourly rate for construction precast components. This results in a total of 55,157 precast components or 772,198 activities in details, making up 90% of total data for precast component productivity in recent 10 years in Taiwan. The findings show that (1) set enhanced KNN identifies 5, 7, and 3 key activities for main beam, beam, and column component production, respectively; (2) SOMMTS yields 3 complexity levels for all types of precast component production; (3) Arena simulation brings about 6.9% saving for the total cost.
關鍵字(中) ★ 預鑄工法
★ 生產力
★ 人力彈性運用
★ K-近鄰演算法
★ 約略集合理論
★ 自我組織特徵映射圖網路
★ 複雜度
★ 節省人力成本
關鍵字(英) ★ Construction precast component
★ Productivity
★ KNN
★ Rough set
★ SOM
★ Simulation
★ Complexity level
★ Manpower cost saving
論文目次 Abstract III

Table of contents VII

Table contents IX

Chapter 1 Introduction 1

1.1 Research background and motivation 1

1.2 Research purpose 3

1.3 Research scope 3

1.4 Research process 4

Chapter 2 Literature review 8

2.1 Precast production management 8

2.2 Production process of each component in precast plant 9

2.3 Production efficiency evaluation 12

2.4 Raugh set theory 13

2.5 Self organizing feature map network 16

2.6 System simulation 18

2.6.1 Basic concepts of system simulation 18

2.6.2 Arena system simulation software 22

2.6.3 Arena system simulation applied to construction industry 24

2.7 Summary 25

Chapter 3 Expert interview and data collection 27

3.1 Expert interviews, assumptions and constraints 27

3.1.1. Interview question design 27

3.1.2. Selection of interviewees 28

3.1.3. Interview opinions and suggestions 30

3.1.4. Assumptions and limitations 33

3.2 Data collection 34

3.2.1 Narrative statistical analysis of precast project type data 34

3.2.2 Characteristic analysis of production time data 39

3.3 Summary 43

Chapter 4 Project correlation analysis of Precast component production efficiency 44

4.1 Reduced set algorithm 44

4.2 Reduction sets 50

4.3 Extraction of items affecting production efficiency 51

Chapter 5 Precast project complexity grouping 62

5.1 Motion trajectory similarity measurement based on self organizing feature map 62

5.2 Clustering results 68

5.2.1 Classification of project complexity of girder members 69

5.2.2 Classification of project complexity of trabecular members 74

5.2.3 Classification of column member project complexity 79

Chapter 6 Establishment of labor cost simulation model for pre casting workers 87

6.1 System simulation model architecture 87

6.1.1 Calculation of labor cost parameters 88

6.1.2 Labor cost calculation 90

6.2 Modeling process 91

6.2.1 Random distribution verification of input analyzer data 91

6.2.2 Process setup 92

6.3 Simulation results 95

Chapter 7 Conclusions and suggestions 98

7.1 Conclusion 98

7.2 Research contribution 101

7.3 Recommendations for follow-up studies 102

References 103
參考文獻 【1】徐坤榮, "建築工程營建生產力之研究--以預鑄工法為例," 碩士, 土木工程學研究所, 國立臺灣大學,臺北, 2000
【2】Abdul Kadir, M.R., Lee, W.P., Jaafar, M.S., Sapuan, S.M., Ali, A.A.A. Construction performance comparison between conventional and industrialised building systems in Malaysia Struct. Surv., 24(2006), 412–424
【3】Chen, J.-H., Yang, L.-R., Tai, H.-W.Process reengineering and improvement for building precast production Autom. Constr., 68(2016), 249–258
【4】Špak, M., Kozlovská, M., Struková, Z., Bašková,R.Comparison of Conventional and Advanced Concrete Technologies in terms of Construction Efficiency Advan.in.Mater. Scien. and. Engin.,30(2016),102-108
【5】W.T. Chan, H. Hu.Constraint programming approach to precast production scheduling J. Constr. Eng. Manag., 128 (2002), 513-521
【6】W.T. Chan, H. Hu .Production scheduling for precast plants using a flow shop sequencing model J. Comput. Civ. Eng., 16 (2002), 165-174
【7】C.H. Ko, S.-F. Wang.GA-based decision support systems for precast production planning Autom. Constr., 19 (2010), 907-916
【8】W.T. Chan, Z. Zeng. Rescheduling precast production with multiobjective optimization Inter. Confer. on Comput. in .Civ.Engin., (2005)
【9】J.H. Chen, S. Yan, H.W. Tai, C.Y. Chang. Optimizing profit and logistics for precast concrete production Can. J. Civ. Eng., 44 (2017), 393-406
【10】Z. Ma, Z. Yang, S. Liu, S. Wu. Optimized rescheduling of multiple production lines for flowshop production of reinforced precast concrete components Autom. Constr.,95(2018),86-97
【11】V. Benjaoran, N. Dawood. A case study of artificial intelligence planner for make–to–order precast concrete production planning Inter. Confer. on Comput. in .Civ.Engin., (2005)
【12】C.M. Eastman, R. Sacks Relative productivity in the AEC industries in the United States for on-site and off-site activities J. Constr. Eng. Manag., 134 (7) (2008), 517-526
【13】A.A. Hammad, M. Hastak, M.Syal Comparative study of manufactured housing production systems J. Archit. Eng., 10 (2004), 136-142
【14】Z. Yang, Z. Ma, S. Wu. Optimized flowshop scheduling of multiple production lines for precast production Autom. Constr., 72 (2016), 321-329
【15】J.H. Chen, L.R. Yang, H.W. Tai. Process reengineering and improvement for building precast production Autom. Constr., 68 (2016),249-258
【16】S. Yoon, Q. Wang, H. Sohn Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning Autom. Constr., 86 (2018), 81-98
【17】Ko, C.-H., Wang, S.-F. Precast production scheduling using multi objective genetic algorithms Exp .Syst. with .Appli .,38(2011), 8293–8302
【18】Dawood, N. N.Knowledge elicitation and dynamic scheduling using a simulation model: An application to the precast manufacturing process, In Proceedings of the Civil-Comp93, Part 4: Knowledge based systems for civil and structural engineering ., (1993),73
【19】N.N. Dawood, R.H.Neale Capacity planning model for precast concrete building products J. of. Build. and. Envir., 28 (1993), 81-95
【20】N.N. Dawood. A simulation model for eliciting scheduling knowledge: An application to the precast manufacturing process J. of. Advan.in. Engin. Soft., 25 (1996), 215-223
【21】N.N. Dawood. Scheduling in the precast concrete industry using the simulation modelling approach J. of. Build. and. Environ., 30 (1995), 197-207
【22】Vern, K., & Gunal, A. Use of simulation for construction elements manufacturing In. Procee. of. the. wint. simul. confer., 2(1998), 1273–1277.
【23】S.S. Leu, S.T. Hwang. Optimal repetitive scheduling model with shareable resource constraint J.of.Const.Engin.and Mana.,27 (2001), 270-280
【24】J.H. Chen, S. Yan, H.W. Tai, C.Y. Chang Optimizing profit and logistics for precast concrete production Can. J. Civ. Eng., 44 (2017), 393-406
【25】Chen, J.-H., Hsu, S.-C., Chen, C.-L., Tai, H.-W., Wu, T.-H. Exploring the association rules of work activities for producing precast components. Autom. Constr., 111(2020), 103059
【26】M.K. Kim, Q. Wang, J.W. Park, J.C.P. Cheng, H. Sohn, C.C. Chang Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM Autom. Constr., 72 (2016),102-114
【27】M.K. Kim, H. Sohn, C.C. Chang Automated dimensional quality assessment of precast concrete panels using terrestrial laser scanning Autom. Constr., 45 (2014), 163-177
【28】A. Warszawski.Production planning in prefabrication plant Build.and. Enviro., 19(1984), 139-147
【29】C.M. Eastman, R.SacksRelative productivity in the AEC industries in the United States for on-site and off-site activities J. Constr. Eng. Manag., 134 (7) (2008), 517-526
【30】A. T. De Albuquerque, M. K. El Debs, and A. M. C. Melo.A cost optimization-based design of precast concrete floors using genetic algorithms Autom. Constr., 22(2012), 348-356
【31】戴興偉, "建築預鑄結構體生產難易度分級與分析之研究," 博士, 營建管理研究所, 國立中央大學, 桃園, 2016
【32】紀明佳, "半導體封裝廠生產效率之評估分析," 碩士, 運籌管理研究所, 國立高雄第一科技大學, 高雄, 2008
【33】Ertray, T., and Ruan, D.Data envelopment analysis based decision model for optimal operator allocation in CMS Eur. J. of .Oper. Resear., 64(2005), 800-810
【34】Pawlak, Z. Rough sets decision algorithms and Bayes’ theorem Eur. J. of .Oper. Resear., 136(2002),181-189
【35】Pawlak, Z.Decisions rules and flow networks Eur. J. of .Oper. Resear., 154(2004),184-190
【36】Pawlak, Z.Rough sets Inter. J.of. Com. and. Infor. Scien., 11(1982), 341–356
【37】Dimitras, A. I., Slowinski, R., Susmaga, R. and Zopounidis, C. Business Failure Prediction Using Rough Sets Eur. J. of .Oper. Resear.,114(1999),263-280.
【38】Shen, L., Tay, F. E. H., Qu, L. and Shen, Y.Fault Diagnosis Using Rough Sets Theory Com. in. Indust., 43(2000),61-72
【39】Li, B. and Cho, K. K. An Inventory Classification Method Using Rough Set Theory Proceed. of. 7th. Ann. Intern. Confer.,(2002), 310-313
【40】Walczak, B. and Massart, D. L. Rough Sets Theory Chem. and .Intell. Labor. Syst., 47(1999),1-16
【41】Kusiak, A.Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing IEEE. Transa. on. Electron. Packag. Manufact., 24(2001),44-50
【42】Hamouda, S.K.M., Wahed, M.E., Abo Alez, Reda.H., Riad, K.Robust breast cancer prediction system based on rough set theory at National Cancer Institute of Egypt Compu. Meth. and .Progr. in .Biomed., 153(2018)
【43】Daubie M., Levecq, P. & Meskens, N. A comparison of rough sets and recursive partitioning induction approaches: an application to commercial loans Interna. Transa. in. Operat. Resear., 9(2002),681-694
【44】Yao, Y. Y. and Zhao, Y.Attribute reduction in decision-theoretic rough set models Informa. Scien., 178(2008),3356-3373
【45】Shyng, J.-Y., Shieh, H.-M., Tzeng, G.-H., Hsieh, S.-H.Using FSBT technique with Rough Set Theory for personal investment portfolio analysis Europ. J.of. Operat. Resear., 201(2010), 601–607
【46】Lee, S. C. and Huang, M. J. Applying AI technology and rough set theory for mining association rules to support crime management and fir-fighting resources allocation J. of .Informa. Techno. and. Socie, (2002),65-78
【47】Chu, X. Z., Gao, L., Qiu, H. B., Li, W. D., Shao, X. Y. An expert system using rough sets theory and self-organizing maps to design space exploration of complex products Exper. Syst. with. Applicat., 37 (2010), 7364-7372
【48】Maués, L.M.F., Nascimento, B. do M.O. do, Lu, W., Xue, F.Estimating construction waste generation in residential buildings: A fuzzy set theory approach in the Brazilian Amazon J. of. Clean. Product.,265(2020)
【49】林佳正, "工程技術顧問業員工海外派遣意願之規則探勘," 博士, 營建管理研究所,國立中央大學, 桃園, 2014
【50】T. Kohonen.Self-organizing and Associate Memory, 3rd ed., Springer-Verlag London,1989
【51】T. Kohonen.Self-organizing Maps, Springer-Verlag, Berlin, 1995
【52】林則孟, "系統模擬理論與應用, "滄海書局,2001
【53】Kelton, W. D., Sadowski, R.P. and Sadowski, D. A. 2nd Edition, McGraw–Hill, New York. Simulation with Arena,2002
【54】簡國凱, "限制理論排程之流程指標模擬研究," 碩士, 工業工程與管理系, 朝陽科技大學, 臺中, 2016
【55】Khoshnevis, B.Discrete Systems Simulation, McGraw-Hall, New York, (1994).
【56】Shawki, K.M., Kilani, K., Gomaa, M.A. Analysis of earth-moving systems using discrete-event simulation Alexan. Engin.J., 54(2015), 533–540
【57】龔利, "利用Arena模擬探討營造廠於高科技廠房施工模式—以下部結構工程為例," 碩士, 土木工程研究所, 國立臺灣大學,臺北, 2017
【58】S. Mostafa, N. Chileshe, and T. Abdelhamid.Lean and agile integration within offsite construction using discrete event simulation Constru. Innova., 16(2016), 483-525
【59】牟素雯, "人力成本精簡方案和員工個人特質,對工作態度與生涯規劃認知相關研究――以新竹科學園區積體電路產業為例," 碩士, 企業管理研究所, 中原大學,桃園, 2002
【60】劉發元, "社群網路中基於階層式能力模型之最佳化溝通及人力成本的組隊問題," 碩士, 電腦與通信工程研究所, 國立成功大學,臺南, 2016
【61】林本奚, "醫師納入勞基法對地區醫院醫師人力之影響," 碩士, 健康政策與管理研究所, 國立臺灣大學,臺北, 2018
【62】Hagedorn and Manovskii, 2013 M. Hagedorn, I. Manovskii.Job selection and wages over the business cycle Am. Econ. Rev., 103 (2013), 771-803
【63】Hall, R.Hall Employment fluctuations with equilibrium wage stickiness
Am. Econ. Rev., 95 (2005), 50-65
【64】P. Martins, G. Solon, J. Thomas .Measuring what employers do about entry wages over the business cycle: a new approach Am. Econ. J.: Macroecon., 4 (2012), 36-55
【65】Bosch and Esteban-Pretel, M. Bosch, J. Esteban-Pretel.Job creation and job destruction in the presence of informal markets J. Dev. Econ., 98 (2012), 270-286
【66】Heckman and Pagés, J. Heckman, C. Pagés.The cost of job security regulation: evidence from Latin American labor mark.Econo., 1 (2000), 109-144
【67】Hanna,Sullivan, 2004 A.S. Hanna, K.T. Sullivan Impact of overtime on construction labor productivity Cos. Engine, 46 (2004), 20-27
【68】Krueger, R.A. Quality Control in Focus Group Research. In D. L. Morgan (ed.) Successful Focus Group , Newbury Park, CA: Sage,1993
【69】Zhang, Q., Xie, Q., Wang, G. A survey on rough set theory and its applications CA.Transa. on .Intellig. Techno., 1(2016), 323–333
【70】D’eer, L., Cornelis, C.A comprehensive study of fuzzy covering-based rough set models: Definitions, properties and interrelationships Fuzz. Se. and. Syste., 336(2018), 1–26
【71】J.L.A. Rosa, N.F.F. Ebecken.M.C.A. CostaTowards on an optimized parallel KNN-fuzzy classification approach Manag. Informat. Syst., 7 (2003), 81-88
【72】S. Tan.An effective refinement strategy for KNN text classifier Expe. Syst. with. Applicat., 30 (2006), 290-298
【73】張智傑, "帕金森氏症病人復健輔助系統," 碩士, 資訊工程系, 國立中央大學, 桃園, 2012
【74】Su, M.-C.An SOM-Based Motion Trajectory Recognition Algorithm and Its Application in Monitoring Therapeutic Exercises IEEE .39th. Ann. Comp. Soft. and. Applica. Confer., (2015),732
【75】Law, A. M. and Kelton, W. D.Simulation Modeling and Analysis 3rd ed., McGraw-Hill Higher Education, New York, United States, 2000
指導教授 陳介豪 徐書謙 魏希賢(Jieh-Haur Chen Shu-Chien Hsu Hsi-Hsien WEI) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明