博碩士論文 105388601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.139.69.55
姓名 柯莫(Sasmoko)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 使用不同碳氫燃料之質子陶瓷燃料電池和燃氣輪機混和動力系統之熱力分析研究
(Thermodynamic Analysis of Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems Fed by Hydrocarbon Fuels)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 本研究旨在研究由碳氫化合物燃料供給之質子陶瓷燃料電池(PCFC)和燃氣輪機(GT )混合動力系統。本研究建構了三個系統:案例1、案例2和案例3。案例1、2和3將來自 GT 的高質量熱量分別流入陰極預熱器、重整器,並按比例分別流入陽極和陰極預熱器。選擇甲醇、甲烷、丙烷和丁烷等烴類燃料作為輸入燃料,其中甲醇在外部重整,其他氣體燃料在內部重整。接下來,還分析了空氣和燃料化學計量、蒸汽碳比(S/C)、燃料利用率(Uf)和陽極廢氣再循環比(AOGR)等幾個參數。
本研究使用Thermolib軟體並使用其從參考中獲得的輸入參數來構建此系統。甲醇進料 PCFC/GT 混合系統的結果表明,合適的配置是當來自 GT 的高質量熱量按比例流入陽極和陰極預熱器,如案例3所示。其實現的最大效率為73%,總能質損耗為211 kW。結果表明,燃料電池的可用能效率通過將熱量從 GT 回流到預熱器而提高。此外,利用冷卻劑作為重整器和蒸發器的熱源可以提高系統效率。
AOGR 位置的結果表明,在甲醇進料 PCFC/GT 混合系統中,將陽極出口氣體回流到陽極入口是合適的,因為可以維持重整器的工作溫度。 此外,如案例3所示,陽極預熱器可以在低能質損耗的情況下以最大功率運行。
參數變化的結果表明,PCFC 功率輸出隨著 AOGR 比的增大而增加。它與大量流入陽極的氫氣密不可分。相反,GT 功率輸出隨著渦輪入口溫度和燃燒室反應物的降低而降低。結果表明,與燃料電池功率上升相比,GT功率降低相對較小,因此系統效率隨著AOGR比的增加而增加。此外,安裝 AOGR 還可以維持 PCFC/GT 混合系統在不同燃料利用率(Uf)變化下以最大功率運行。
燃料利用率(Uf)變化的結果表明,該參數對於 PCFC 和 GT 的能量分配至關重要,其中電池功率輸出隨著燃料利用率(Uf)的增加而增加,而 GT 功率輸出減少。結果還表明,PCFC/GT 混合系統可以在低燃料利用率(Uf)下使用 AOGR 產生最大功率,而混合系統在沒有 AOGR 的情況下以及高燃料利用率(Uf)下具有峰值功率。
反應物影響的結果表明,燃料的增加必須隨著空氣的增加而增加,反之亦然。其目標是在最佳條件下運行並使系統功率達到71%–72%。舉例來說,燃料化學計量1.05、1.1和1.2需要分別與空氣化學計量2.5、3和3.5一起進料。
分析的第二個系統是 IR-PCFC/GT 混合系統。結果表明,按比例分配到陽極和陰極預熱器的熱量可以提高系統效率,如案例3所示。該系統的優化參數如下:空氣化學計量比為2,燃料利用率(Uf)為0.85,蒸汽碳比(S/C)為2,以及使用甲烷作為燃料。
這項工作有助於學者確定(i)PCFC/GT 混合系統中的適當配置,(ii)了解良好的 AOGR 位置,(iii)選擇合理的燃料、蒸汽碳比(S/C)、燃料利用率(Uf)、空氣化學計量和燃料化學計量。
摘要(英) This study aims to investigate protonic ceramic fuel cell (PCFC)/gas turbine (GT) hybrid systems fed by hydrocarbon fuels. Three designs are built: case 1, case 2, and case 3. Cases 1, 2, and 3 flow high-quality heat from GT into a cathode preheater, a reformer, and proportionally into anode and cathode preheaters, respectively. Hydrocarbon fuels such as methanol, methane, propane, and butane are chosen as the input fuels, in which methanol is reformed externally, and other gaseous fuels are reformed internally. Next, several parameters such as air and fuel stoichiometry, steam-to-carbon ratio (S/C), fuel utilization factor (Uf), and anode off-gas recycling ratio (AOGR) are also analyzed. Thermolib is employed to build the system with input parameters obtained from references.
The results in methanol-fed PCFC/GT hybrid systems show that the appropriate configuration is when the high-quality heat from GT flows proportionally into anode and cathode preheaters, as indicated in case 3. The maximum efficiency achieved is 73%, with a total exergy destruction of 211 kW. The results show that the exergy efficiency of fuel cells increases by reflowing the heat from GT to preheaters. Moreover, utilizing the coolant as the heat source for a reformer and evaporator can improve system efficiency.
Results of the AOGR location study show that reflowing anode outlet gas into anode inlet is appropriate in a methanol-fed PCFC/GT hybrid system as the operating temperature of the reformer can be maintained. Moreover, an anode preheater can work maximally with low exergy destruction, as indicated in case 3.
The results of the parameter variation show that PCFC power output increases along with a larger AOGR ratio. It is inseparable from an enormous amount of hydrogen flowing into the anode. Conversely, GT power output decreases as turbine inlet temperature and reactant of combustor decrease. The results show that GT power reduction is relatively small compared to fuel cell power rise, so the system efficiency increases with a larger AOGR ratio. Moreover, installing AOGR also can maintain a PCFC/GT hybrid system operating at maximum power under different Uf variations.
The results of Uf variations show that this parameter is essential in energy distribution into PCFC and GT, in which cell power output increases along with increasing Uf, while GT power output decreases. The results also show that PCFC/GT hybrid system can produce maximum power at low Uf with AOGR, and a hybrid system has peak power at high Uf without AOGR.
The results of the reactant effects show that an increase in fuel must follow an increase in air and vice versa. The objective is to run the system under the best possible conditions: 71% to 72%. For example, the fuel stoichiometry 1.05, 1.1, and 1.2 need to feed with the air stoichiometry 2.5, 3, and 3.5, respectively.
The second system analyzed is IR-PCFC/GT hybrid system. The results show that a proportional heat distribution into anode and cathode preheaters can enhance the system efficiency, as indicated in case 3. The optimized parameters for this system are as follows: air stoichiometry of 2, Uf of 0.85, S/C of 2, and methane as a fuel.
This work contributes to the scientific community for (i) determining an appropriate configuration in PCFC/GT hybrid system, (ii) understanding a good AOGR position, (iii) and choosing the reasonable fuel, S/C, Uf, air stoichiometry, and fuel stoichiometry.
關鍵字(中) ★ 空氣當量比
★ 燃料當量比
★ 陽極尾氣回收
★ 水碳比
★ 碳氫燃料
★ 甲醇
★ 質子陶瓷燃料電池
★ 混和動力系統
★ 模擬與分析
關鍵字(英) ★ air stoichiometry
★ fuel stoichiometry
★ anode off gas recycling
★ steam to carbon
★ hydrocarbon fuel
★ methanol
★ protonic ceramic fuel cell
★ combined cycle
★ modeling and simulation
論文目次 Chinese Abstract …………………………………………………………………………………………………………………………………………………………………………………………………… i
English Abstract …………………………………………………………………………………………………………………………………………………………………………………………………… iii
Acknowledgments …………………………………………………………………………………………………………………………………………………………………………………………………… v
Table of Contents …………………………………………………………………………………………………………………………………………………………………………………………………… vi
List of Figures …………………………………………………………………………………………………………………………………………………………………………………………………… x
List of Tables …………………………………………………………………………………………………………………………………………………………………………………………………… xiii
Nomenclatures …………………………………………………………………………………………………………………………………………………………………………………………………… xiv
Chapter 1 Introduction …………………………………………………………………………………………………………………………………………………………………………………… 1
1-1 Background …………………………………………………………………………………………………………………………………………………………………………………… 1
1-2 Motivation …………………………………………………………………………………………………………………………………………………………………………………… 2
1-3 Literature Review …………………………………………………………………………………………………………………………………………………………………………………… 2
1-3-1 Protonic Ceramic Fuel Cell …………………………………………………………………………………………………………………………………………………… 2
1-3-2 Fuel Cell/Gas Turbine Hybrid System …………………………………………………………………………………………………………………………………… 4
1-3-2 (a) Simulation Report …………………………………………………………………………………………………………………………………………………………………… 4
1-3-2 (b) Market Report …………………………………………………………………………………………………………………………………………………………………… 5
1-3-3 Parameters …………………………………………………………………………………………………………………………………………………………………………………………………… 8
1-3-3 (a) Anode off-gas Recycling …………………………………………………………………………………………………………………………………………………… 9
1-3-3 (b) Air Stoichiometry …………………………………………………………………………………………………………………………………………………………………… 9
1-3-3 (c) Fuel Stoichiometry …………………………………………………………………………………………………………………………………………………………………… 9
1-3-3 (d) Fuel Utilization Factor …………………………………………………………………………………………………………………………………………………… 10
1-3-3 (e) Steam to Carbon Ratio …………………………………………………………………………………………………………………………………………………… 10
1-4 PCFC/GT Hybrid Systems Analyzed in This Current study …………………………………………………………………… 11
1-4-1 Three PCFC/GT Hybrid Systems with Reformer …………………………………………………………………………………………………… 11
1-4-1 (a) Case 1 …………………………………………………………………………………………………………………………………………………………………………………… 11
1-4-1 (b) Case 2 …………………………………………………………………………………………………………………………………………………………………………………… 11
1-4-1 (c) Case 3 …………………………………………………………………………………………………………………………………………………………………………………… 12
1-4-2 Three IR-PCFC/GT Hybrid Systems …………………………………………………………………………………………………………………… 16
1-4-2 (a) Case 1 …………………………………………………………………………………………………………………………………………………………………………………… 16
1-4-2 (b) Case 2 …………………………………………………………………………………………………………………………………………………………………………………… 17
1-4-2 (c) Case 3 …………………………………………………………………………………………………………………………………………………………………………………… 17
Chapter 2 Theoretical Modeling …………………………………………………………………………………………………………………………………………………… 21
2-1 Thermodynamic Properties …………………………………………………………………………………………………………………………………………………… 21
2-1-1 Gas Phase …………………………………………………………………………………………………………………………………………………………………………………………………… 21
2-1-2 Ideal Gas Model …………………………………………………………………………………………………………………………………………………………………………………… 21
2-2 Conservation Laws …………………………………………………………………………………………………………………………………………………………………… 22
2-2-1 Mass Conservation …………………………………………………………………………………………………………………………………………………………………… 22
2-2-2 Energy Conservation …………………………………………………………………………………………………………………………………………………… 22
2-3 Pump …………………………………………………………………………………………………………………………………………………………………………………………………… 22
2-4 Compressor …………………………………………………………………………………………………………………………………………………………………………………… 23
2-5 Turbine …………………………………………………………………………………………………………………………………………………………………………………………………………………… 24
2-6 Mixer …………………………………………………………………………………………………………………………………………………………………………………………………… 24
2-7 Splitter …………………………………………………………………………………………………………………………………………………………………………………… 24
2-8 Heat Exchanger …………………………………………………………………………………………………………………………………………………………………………………… 25
2-9 Combustor …………………………………………………………………………………………………………………………………………………………………………………… 26
2-10 Reformer …………………………………………………………………………………………………………………………………………………………………………………………………… 26
2-11 Protonic Ceramic Fuel Cell …………………………………………………………………………………………………………………………………… 27
2-11-1 Activation Polarization …………………………………………………………………………………………………………………………………………………… 27
2-11-2 Ohmic Polarization …………………………………………………………………………………………………………………………………………………… 28
2-11-3 Concentration Polarization …………………………………………………………………………………………………………………………………… 28
2-12 Exergy …………………………………………………………………………………………………………………………………………………………………………………………………… 30
Chapter 3 Validation …………………………………………………………………………………………………………………………………………………………………… 32
3-1 Thermodynamic Properties …………………………………………………………………………………………………………………………………………………… 32
3-2 Steam Reforming …………………………………………………………………………………………………………………………………………………………………… 32
3-2-1 Methanol Steam Reforming …………………………………………………………………………………………………………………………………… 33
3-2-2 Methane Steam Reforming …………………………………………………………………………………………………………………………………………………… 33
3-3 PCFC …………………………………………………………………………………………………………………………………………………………………………………………………… 34
3-3-1 Effect of Temperature …………………………………………………………………………………………………………………………………………………… 34
3-3-2 Effect of Electrolyte Thickness …………………………………………………………………………………………………………………………………… 35
3-3-3 Effect of Pressure …………………………………………………………………………………………………………………………………………………… 36
3-4 SOFC/GT Hybrid System …………………………………………………………………………………………………………………………………………………………………… 37
3-5 Computation Time …………………………………………………………………………………………………………………………………………………………………… 40
Chapter 4 Balance of Plant …………………………………………………………………………………………………………………………………………………… 41
4-1 PCFC …………………………………………………………………………………………………………………………………………………………………………………………………… 41
4-1-1 External Reforming PCFC …………………………………………………………………………………………………………………………………………………… 41
4-1-2 Internal Reforming PCFC …………………………………………………………………………………………………………………………………………………… 42
4-2 Methanol Steam Reformer …………………………………………………………………………………………………………………………………………………… 43
4-3 Heat Exchanger …………………………………………………………………………………………………………………………………………………………………… 43
4-4 Gas Turbine …………………………………………………………………………………………………………………………………………………………………………………… 44
4-5 Auxiliary Components …………………………………………………………………………………………………………………………………………………………………… 44
Chapter 5 Results and Discussion …………………………………………………………………………………………………………………………………… 45
5-1 Analysis of Three PCFC/GT Hybrid Systems with Reformer …………………………………………………………………………………… 45
5-1-1 Case Comparison Based on Exergy …………………………………………………………………………………………………………………… 45
5-1-2 Case Comparison Based on Energy …………………………………………………………………………………………………………………… 53
5-1-3 Effect of AOGR and Uf on MSR, PCFC, and GT …………………………………………………………………………………… 55
5-1-4 Effect of AOGR and Uf on System Efficiency and EMI …………………………………………………………………………………… 58
5-2 Analysis of Three Different AOGR Arrangements of PCFC/GT Hybrid System with Reformer …… 61
5-2-1 Case Comparison …………………………………………………………………………………………………………………………………………………………………………………… 62
5-2-1 (a) Case 1, Anode off-gas is Recycled into an MSR Inlet …………………………………………………………………… 62
5-2-1 (b) Case 2, Anode off-gas is Recycled into an Anode Preheater Inlet …………………………………… 64
5-2-1 (c) Case 3, Anode off-gas is Recycled into an Anode Inlet …………………………………………………………………… 64
5-2-2 Effect of Anode and Cathode Stoichiometries on MSR, PCFC, and GT …………………………………………………… 70
5-2-3 Effect of Anode and Cathode Stoichiometries on System Efficiency and EMI …………………… 72
5-3 Analysis of a PCFC/GT/CHP Hybrid System with Reformer …………………………………………………………………………………… 74
5-3-1 Reformer System …………………………………………………………………………………………………………………………………………………………………………………… 76
5-3-2 PCFC System …………………………………………………………………………………………………………………………………………………………………………………… 78
5-3-3 Gas Turbine System …………………………………………………………………………………………………………………………………………………… 78
5-3-4 HRSG System …………………………………………………………………………………………………………………………………………………………………………………… 80
5-3-5 Exergy Analysis …………………………………………………………………………………………………………………………………………………………………………………… 81
5-4 Analysis of Three IR-PCFC/GT Hybrid Systems …………………………………………………………………………………………………………………… 87
5-4-1 Case Comparison …………………………………………………………………………………………………………………………………………………………………………………… 87
5-4-2 Effect of Air Flow Rate …………………………………………………………………………………………………………………………………………………………………… 93
5-4-3 Effect of Fuel Utilization Factor …………………………………………………………………………………………………………………………………… 95
5-4-4 Effect of Steam to Carbon Ratio …………………………………………………………………………………………………………………………………… 97
5-4-5 Fuel Comparison …………………………………………………………………………………………………………………………………………………………………………………… 99
Chapter 6 Conclusions …………………………………………………………………………………………………………………………………………………………………………………… 102
Suggestions …………………………………………………………………………………………………………………………………………………………………………………………………… 105
Bibliography …………………………………………………………………………………………………………………………………………………………………………………… 107
Appendix …………………………………………………………………………………………………………………………………………………………………………………………………………………… 118
List of International Conferences …………………………………………………………………………………………………………………………………… 127
List of Publications …………………………………………………………………………………………………………………………………………………………………… 129
參考文獻 [1]. Milewski J, Swirski K, Santarelli M, Leone P. Green energy and technology: Advanced methods of solid oxide fuel cell modeling. London: Springer; 2011.
[2]. Zao Y, Sadhukhan J, Lanzini A, Brandon N, Shah N. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid. J Power Sources 2011;196:9516–27. https://doi.org/10.1016/j.jpowsour.2011.07.044.
[3]. Van Biert L, Woudstra T, Godjevac M, Visser K, Aravind PV. A thermodynamic comparison of solid oxide fuel cell-combined cycles. J Power Sources 2018;397:382–96. https://doi.org/10.1016/j.jpowsour.2018.07.035.
[4]. Singh R, Singh O. Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle. Energy Convers Manag 2018;171:659–70. https://doi.org/10.1016/j.enconman.2018.06.009.
[5]. Eisavi B, Chitsaz A, Hosseinpour J, Ranjbar F. Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems. Energy Convers Manag 2018;168:343–56. https://doi.org/10.1016/j.enconman.2018.04.088.
[6]. Ni M, Leung DYC, Leung MKH. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. J Power Sources 2008;183:682–86. https://doi.org/10.1016/j.jpowsour.2008.05.022.
[7]. Cheng T-C, Huang T-Y, Tseng C-J, Lee S-W, Chang J-K, Jang S-C. Analysis of an intermediate-temperature proton-conducting SOFC hybrid system. Int J Green Energy 2016;13:1640–47. https://doi.org/10.1080/15435075.2016.1171229
[8]. Iwahara H. High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production. Solid State Ions 1988;28–30:573–8. https://doi.org/10.1016/S0167-2738(88)80104-8.
[9]. Potter AR, Baker RT. Impedance studies on Pt|SrCe0.95Yb0.05O3|Pt under dried and humidified air, argon and hydrogen. Solid State Ions 2006;177:1917–24. https://doi.org/10.1016/j.ssi.2006.06.022.
[10]. Arpornwichanop A, Patcharavorachot Y, Assabumrungrat S. Analysis of a proton-conducting SOFC with direct internal reforming. Chem Eng Sci 2010;65:581–9. https://doi.org/10.1016/j.ces.2009.06.066.
[11]. Menon V, Banerjee A, Dailly J, Deutschmann O. Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Appl Energy 2015;149:161–75. https://doi.org/10.1016/j.apenergy.2015.03.037.
[12]. Luo Y, Li Y, Li M. Electrical characterization of mixed conducting SCY-YDC composite electrolyte. Ceram Int 2020;46:16266–73. https://doi.org/10.1016/j.ceramint.2020.03.183.
[13]. Zhang C, Li S, Liu X, Zhao X, He D, Qiu H, Yu Q, Wang S, Jiang L. Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process Int J Hydrogen Energy 2013;38:12921–6. https://doi.org/10.1016/j.ijhydene.2013.05.069.
[14]. Sammes N, Phillips R, Smirnova A. Proton conductivity in stoichiometric and sub-stoichiometric yttrium doped SrCeO3 ceramic electrolytes. J Power Sources 2004;134:153–9. https://doi.org/10.1016/j.jpowsour.2004.02.036.
[15]. Lee K-R, Tseng C-J, Chang J-K, Wang K-W, Huang Y-S, Chou T-C, Tsai L-D, Lee S-W. Nano-fibrous SrCe0.8Y0.2O3-δ-Ni anode functional layer for proton-conducting solid oxide fuel cells. J Power Sources 2019;346:226863. https://doi.org/10.1016/j.jpowsour.2019.226863.
[16]. Zhan S, Zhu X, Ji B, Wang W, Wang X, Wang J, Wang W, Lin L. Preparation and hydrogen permeation of SrCe0.95Y0.05O3−ı asymmetrical membranes. J Memb Sci 2009;340:241–8. https://doi.org/10.1016/j.memsci.2009.05.037.
[17]. Higuchi T, Tsukamoto T, Sata N, Hattori T, Yamaguchi S, Shin S. Electronic structure of protonic conductor SrCeO3 by soft-X-ray spectroscopy. Solid State Ion 2004;174:549–52. https://doi.org/10.1016/j.ssi.2004.03.041.
[18]. Higuchi T, Tsukamoto T, Sata N, Yamaguchi S, Shin S, Hattori T. Electronic structure of proton conducting SrCeO3–SrZrO3 thin films. Solid State Ion 2005;176:2963–6. https://doi.org/10.1016/j.ssi.2005.09.031.
[19]. Kalinci Y, Dincer I. Analysis and performance assessment of NH3 and H2 fed SOFC with proton-conducting electrolyte.
Int J Hydrogen Energy 2018;43:5795–807. https://doi.org/10.1016/j.ijhydene.2017.07.234
[20]. Chen B, Xu H, Zhang Y, Dong F, Tan P, Zhao T, Ni M. Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation. Int J Hydrogen Energy 2019;44:15313–21. https://doi.org/10.1016/j.ijhydene.2019.02.244.
[21]. Milewski J, Szczęśniak A, Szablowski L. A discussion on mathematical models of proton conducting Solid Oxide Fuel Cells. Int J Hydrogen Energy 2019;44:10925–32. https://doi.org/10.1016/j.ijhydene.2019.02.082.
[22]. Saebea D, Arpornwichanop A, Patcharavorachot Y. Thermodynamic analysis of a proton conducting SOFC integrated system fuelled by different renewable fuels. Int J Hydrogen Energy 2021;46:11445–57. https://doi.org/10.1016/j.ijhydene.2020.07.264.
[23]. Sayadian S, Ghassemi M, Robinson AJ. Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell. J Power Sources 2021;481:228997. https://doi.org/10.1016/j.jpowsour.2020.228997.
[24]. Sayadian S, Sayadian M, Ahmadi S, Robinson AJ. Numerical analysis of transport phenomena in solid oxide fuel cell gas channels. Fuel 2022;311:122557. https://doi.org/10.1016/j.fuel.2021.122557.
[25]. Kuchonthara P, Bhattacharya B, Tsutsumi A. Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. J Power Sources 2003;117:7–13. https://doi.org/10.1016/S0378-7753(03)00009-0.
[26]. Kuchonthara P, Bhattacharya S, Tsutsumi A. Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. J Power Sources 2003;124:65–75. https://doi.org/10.1016/S0378-7753(03)00740-7.
[27]. Inui Y, Matsumae T, Koga H, Nishiura K. High performance SOFC/GT combined power generation system with CO2 recovery by oxygen combustion method. Energy Convers Manag 2005;46:1837–47. https://doi.org/10.1016/j.enconman.2004.08.011.
[28]. Bang-Møller C, Rokni M. Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems. Energy Convers Manag 2010;51:2330–9. https://doi.org/10.1016/j.enconman.2010.04.006.
[29]. Barelli L, Bidini G, Ottaviano A. Integration of SOFC/GT hybrid systems in Micro-Grids. Energy 2017;118:716–28. https://doi.org/10.1016/j.energy.2016.10.100.
[30]. Badur J, Lemański M, Kowalczyk T, Ziółkowski P, Kornet S. Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 2018;158:128–38. https://doi.org/10.1016/j.energy.2018.05.203.
[31]. Martinez AS, Brouwer J, Samuelsen GS. Comparative analysis of SOFC-GT freight locomotive fueled by natural gas and diesel with onboard reformation. Appl Energy 2015;148:421–38. https://doi.org/10.1016/j.apenergy.2015.01.093.
[32]. Ghorbani S, M.H. Khoshgoftar-Manesh MH, Nourpour M, Blanco-Marigorta AM. Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system. Energy 2020;206:118151. https://doi.org/10.1016/j.energy.2020.118151.
[33]. Bakalis DP, Stamatis AG. Optimization methodology of turbomachines for hybrid SOFC-GT applications. Energy 2014;70:86–94. https://doi.org/10.1016/j.energy.2014.03.093.
[34]. Bakalis DP, Anastassios GS. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components. Energy Convers Manag 2012;64:213–21. https://doi.org/10.1016/j.enconman.2012.04.004.
[35]. Nishiura M, Koga S, Kabata T, Hisatome N, Kosaka K, Ando Y, Kobayashi Y. Development of SOFC-micro gas turbine combined cycle system. ECS Transactions 2007;7:155–60. https://doi.org/10.1149/1.2729085.
[36]. Yoshida S, Kabata T, Nishiura M, Koga S, Tomida K, Miyamoto K, Teramoto Y, Matake N, Tsukuda H, Suemori S, Ando Y, Kobayashi Y. Development of the SOFC-GT combined cycle system with tubular type cell stack. ECS Transactions 2011;35:105–11. https://doi.org/10.1149/1.3569984
[37]. Kobayashi Y, Ando Y, Nishiura M, Tomida K, Kishizawa H, Matake N. Next generation SOFC/combined power generation system (high efficiency hybrid power generation system). Mitsubishi Heavy Industries Technical Review 2013;50:42–6. Available online: https://www.mhi.co.jp/technology/review/pdf/e503/e503042.pdf (accessed on 11 November 2022).
[38]. Miyamoto K, Mihara M, Oozawa H, Hiwatashi K, Tomida K, Nishiura M, Kishizawa H, Mori R, Kobayashi Y. Recent Progress of SOFC Combined Cycle System with Segmented-in-series Tubular Type Cell Stack at MHPS. ECS Transactions 2015;68:51–8. https://doi.org/ 10.1149/06801.0051ecst.
[39]. Solid Oxide Fuel Cells (SOFC) - Mitsubishi power. Available online: https://power.mhi.com/products/sofc/pdf/sofc_en.pdf (accessed on 11 November 2022).
[40]. Kobayashi Y, Tomida K, Nishiura M, Hiwatashi K, Kishizawa H, Takenobu K. Development of Next-Generation Large-Scale SOFC toward Realization of a Hydrogen Society. Mitsubishi Heavy Industries Technical Review 2015;52:111–6. https://doi.org/10.1299/jsmemecj.2015._S0830303-.
[41]. MHPS says Megamie is name for integrated SOFC-MGT system. Fuel Cell Bulletin 2018;12:7. https://doi.org/10.1016/S1464-2859(18)30454–1.
[42]. Yoshida Y, Hisatome N, Takenobu K. Development of SOFC for products. Mitsubishi Heavy Industries Technical Review 2003;40:1–5. Available online: https://www.mhi.co.jp/technology/review/pdf/e404/e404204.pdf (accessed on 11 November 2022).
[43]. Kobayashi D, Mihara M, Oozawa H, Hiwatashi K, Nishiura M, Tomida K, Kitagawa Y. Recent Progress in Development of SOFC-Micro Gas Turbine Hybrid System. Mitsubishi Heavy Industries Technical Review. 2016:C241. https://doi.org/10.1299/jsmepes.2016.21.C241.
[44]. Kobayashi Y, Ando Y, Nishiura M, Kishizawa H, Itawa M, Matake N, Tomida K. Recent Progress of SOFC Combined Cycle System with Segmented-in-series Tubular Type Cell Stack at MHI. ECS Transactions 2013;57:53–60. https://doi.org/ 10.1149/05701.0053ecst.
[45]. Kobayashi Y, Ando Y, Kabata T, Nishiura M, Tomida K, Matake N. Extremely high-efficiency thermal power system-solid oxide fuel cell (SOFC) triple combined-cycle system. Mitsubishi Heavy Industries Technical Review. 2011:48:9–15. Available online: https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf (accessed on 11 November 2022).
[46]. Gengo T, Kobayashi Y, Ando Y, Hisatome N, Kabata T, Kosaka K. Development of 200kW Class SOFC Combined Cycle System and Future View. Mitsubishi Heavy Industries Technical Review. 2008;45:33–6. Available online: https://www.mhi.co.jp/technology/review/pdf/e451/e451033.pdf. (accessed on 11 November 2022).
[47]. Behling NH. Chapter 6 - History of Solid Oxide Fuel Cells. Fuel Cells. Elsevier;2013. https://doi.org/10.1016/B978-0-444-56325-5.00006-5.
[48]. Ando Y, Oozawa H, Mihara M, Irie H, Urashita Y, Ikegami T. Mitsubishi Heavy Industries Technical Review. 2015;4:47–52. Available online: https://www.mhi.co.jp/technology/review/pdf/e524/e524047.pdf. (accessed on 11 November 2022).
[49]. Irie H, Miyamoto K, Teramoto Y, Nagai T, Endo R, Urashita Y. Efforts toward Introduction of SOFC-MGT Hybrid System to the Market. Mitsubishi Heavy Industries Technical Review. 2017;54:69–72. Available online: https://www.mhi.co.jp/technology/review/pdf/e543/e543069.pdf. (accessed on 11 November 2022).
[50]. Zabihian F, Fung AS. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels. Energy Convers Manag 2013;76:571–80. https://doi.org/10.1016/j.enconman.2013.08.005.
[51]. Jia J, Li Q, Luo M, Wei L, Abudula A. Effects of gas recycle on performance of solid oxide fuel cell power systems. Energy 2011;36:1068–75. https://doi.org/10.1016/j.energy.2010.12.001.
[52]. Peters R, Deja R, Blum L, Pennanen J, Kiviaho J, Hakala T. Analysis of solid oxide fuel cell system concepts with anode recycling. Int J Hydrogen Energy 2013;16: 6809–20. https://doi.org/10.1016/j.ijhydene.2013.03.110.
[53]. Carré M, Brandenburger R, Friede W, Lapicque F, Limbeck U, da Silva P. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle. J Power Sources 2015;282:498–510. https://doi.org/10.1016/j.jpowsour.2015.02.053.
[54]. Dietrich R-U, Oelze J, Lindermeir A, Spitta C, Steffen M, Küster T, Chen S, Schlitzberger C, Leithner R. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle – Results for a small scale propane driven unit. J Power Sources 2011;17:7152–60. https://doi.org/10.1016/j.jpowsour.2010.09.016.
[55]. Song TW, Sohn JK, Kim TS, Ro ST. Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine. J Power Sources 2006;158:361–7. https://doi.org/10.1016/j.jpowsour.2005.09.031.
[56]. Calise F, Palombo A, Vanoli L. Design and partial load exergy analysis of hybrid SOFC–GT power plant. J Power Sources 2006;158:225–44. https://doi.org/10.1016/j.jpowsour.2005.07.088.
[57]. Calise F, Dentice d’Accadia M, Palombo A, Vanoli L. Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System. Energy 2006;31:3278–99. https://doi.org/10.1016/j.energy.2006.03.006.
[58]. Cheddie DF, Murray R. Thermo-economic modeling of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. J Power Sources 2010;195:8134–40. https://doi.org/10.1016/j.jpowsour.2010.07.012.
[59]. Cheddie DF, Murray R. Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling.
Int J Hydrogen Energy 2010;35:11208–15. https://doi.org/10.1016/j.ijhydene.2010.07.082.
[60]. Suzuki T, Fanahasi Y, Yamaguchi T, Fujishiro Y, Awano M. Effect of the Fuel Flow Rate on the Performance of the Chip-Type SOFC Module. J Electrochem Soc 2008;12:B1296–9. https://doi.org/10.1149/1.2990722.
[61]. Solid Oxide Fuel Cell stack: Fuel cell technology by Elcogen. Available online: https://elcogen.com/products/solid-oxide-cell-stacks/ (accessed on 11 November 2022).
[62]. Chen H, Yang C, Zhou N, Harun NF, Oryshchyn D, Tucker D. High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system. Appl Energy 2020;35:115160. https://doi.org/10.1016/j.apenergy.2020.115160.
[63]. Huang S, Yang C, Chen H, Zhou N, Tucker D. Coupling impacts of SOFC operating temperature and fuel utilization on system net efficiency in natural gas hybrid SOFC/GT system. Case Stud Therm Eng 2022;31:101868. https://doi.org/10.1016/j.csite.2022.101868.
[64]. Li Z, Zhang X, He X, Wu G, Tian S, Zhang D, Zhang Q, Liu Y. Comparative analysis of thermal economy of two SOFC-GT-ST triple hybrid power systems with carbon capture and LNG cold energy utilization. Energy Convers Manag 2022;256:115385. https://doi.org/10.1016/j.enconman.2022.115385.
[65]. Program for Finding Coefficients of NASA Polynomials. Available online: https://link.springer.com/content/pdf/bbm:978-1-4684-0186-8/1.pdf (accessed on 11 November 2022).
[66]. Thermolib: Simulation toolbox for the design and development of thermodynamic system in Matlab/Simulink. Available online: https://www.thermolib.de/media/thermolib/downloads/Thermolib-UserManual.pdf (accessed on 11 November 2022).
[67]. Çengel YA, Boles MA. Thermodynamics: An engineering approach. New York: McGraw-Hill Education;2015.
[68]. Çengel YA, Ghajar AJ, annotated by Ma H-K. Heat and mass transfer: Fundamentals & Applications. New York: McGraw-Hill Education;2015.
[69]. O’Hayre R, Cha S-W, Colella WG, Prinz FB. Fuel cell fundamentals. New Jersey: John Wiley & Sons;2009.
[70]. Ni M, Shao Z, Chan KY. Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies 2014;7:4381–96. https://doi.org/10.3390/en7074381.
[71]. Revankar S, Majumdar P. Fuel cells: Principles, design, and analysis. Florida: CRC press;2014.
[72]. Suwanwarangkul R, Croiset E, Floler MW, Douglas PL, Entchev E, Douglas MA. Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. J Power Sources 2003;122:9–18. https://doi.org/10.1016/S0378-7753(02)00724-3.
[73]. Tseronis K, Kookos IK, Theodoropoulos C. Modelling mass transport in solid oxide fuel cell anodes: a case for a multidimensional dusty gas-based model. Chem Eng Sci 2008;63:5626–38. https://doi.org/10.1016/j.ces.2008.07.037.
[74]. Dincer I, Rosen, M.A. Exergy: Energy, Environment and Sustainable Development. Elsevier: Oxford, UK, 2013.
[75]. Wu Z, Zhu P, Yao J, Zhang S, Ren J, Yang F, Zhang Z. Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations. Appl Energy 2020;279:115794. https://doi.org/10.1016/j.apenergy.2020.115794.
[76]. Standard chemical exergy. Available online: http://web.mit.edu/2.813/www/readings/APPENDIX.pdf (accessed on 11 November 2022).
[77]. Chase MWJ. NIST-JANAF Thermodynamic tables. J Phys Chem Ref Data 1998;9:1–1951. Available online: https://janaf.nist.gov/ (accessed on 11 November 2022).
[78]. Ma Y, Guan G, Shi C, Zhu A, Hao X, Wang Z, Kusakabe W, Abudula A. Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int J Hydrogen Energy 2014;39:258–66. https://doi.org/10.1016/j.ijhydene.2013.09.150.
[79]. Ideris A, Croiset E, Pritzker M, Amin A. Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell. Int J Hydrogen Energy 2017;42:23118–29. https://doi.org/10.1016/j.ijhydene.2017.07.117.
[80]. Ranran P, Yan W, Lizhai Y, Zongqiang M. Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ion 2006;177:389–93. https://doi.org/10.1016/j.ssi.2005.11.020.
[81]. Patcharavorachot Y, Brandon NP, Paengjuntuek W, Assabumrungrat S, Arpornwichanop A. Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte. Solid State Ion 2010;181:1568–76. https://doi.org/10.1016/j.ssi.2010.09.002.
[82]. Tao G, Armstrong T, Virkar A. Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI. In: Nineteenth annual ACERC & ICES conference, Utah, 2005, February.
[83]. Mojaver P, Chitsaz A, Sadeghi M, Khalilarya S. Comprehensive comparison of SOFCs with proton-conducting electrolyte and oxygen ion-conducting electrolyte: Thermoeconomic analysis and multi-objective optimization. Energy Convers Manag 2020;205:112455. https://doi.org/10.1016/j.enconman.2019.112455.
[84]. Braun R. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications. Ph.D. Dissertation, University of Wisconsin-Madison, Madison, United States, 2002.
[85]. Do Nascimento MAR, Rodrigues LdO, Santos ECdS, Gomes EEB, Dias FLG, Velásques EIG, Carrilo RAM. Micro Gas Turbine Engine: A Review. 2013. https://doi.org/10.5772/54444.
[86]. Pirkandi J, Penhani H, Maroufi A. Thermodynamic analysis of the performance of a hybrid system consisting of steam turbine, gas turbine and solid oxide fuel cell (SOFC-GT-ST). Energy Convers Manag 2020;213:112816. https://doi.org/10.1016/j.enconman.2020.112816.
[87]. Fuel cell store: Electrolyte supported planar SOFC. Available online: https://www.fuelcellstore.com/fuel-cell-components/sofc-materials/sofc-electrolyte-planar-cell-100. (accessed on 11 November 2022).
[88]. Lee YS. Mixing effect of transition metals, aliovalent dopants and component elements on proton conducting properties of perovskite type oxides. Ph.D. Dissertation, Kyushu University, Fukuoka, Japan, 2017. Available online: https://catalog.lib.kyushu-u.ac.jp/opac_download_md/1866377/tj1025.pdf (accessed on 11 November 2022).
[89]. Zhang Q, Hou Y, Chen L, Wang L, Chou K. Enhancement of electrochemical performance for proton conductive solid oxide fuel cell by 30% GDC-LSCF cathode. Ceram Int 2022;48:17816–27. https://doi.org/10.1016/j.ceramint.2022.03.052.
[90]. Chen C, Dong Y, Li L, Wang Z, Liu M, Rainwater BH, Bai Y. High performance of anode supported BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton-conducting electrolyte micro-tubular cells with asymmetric structure for IT-SOFCs. J Electroanal Chem 2019;844:49–7. https://doi.org/10.1016/j.jelechem.2019.05.001.
[91]. Bang-Møller C, Rokni M, Elmegaard B. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy 2011;36:4740–52. https://doi.org/10.1016/j.energy.2011.05.005.
[92]. Brus G, Miyawaki K, Iwai H, Saito M, Yoshida H. Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure. Solid State Ion 2014;265:13–21. https://doi.org/10.1016/j.ssi.2014.07.002.
[93]. Gostovic D, Smith JR, Kundinger DP, Jones KS, Wachsman ED. Three-dimensional reconstruction of porous LSCF cathodes. Electrochem Solid-State Lett 2007;10:B214–7. https://doi.org/10.1149/1.2794672.
[94]. Hsueh C-H, Chu H-S, Yan W-M, Chen C-H. Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Appl Energy 2010;87:3137–47. https://doi.org/10.1016/j.apenergy.2010.02.027.
[95]. Wang F, Li L, Liu Y. Effects of flow and operation parameters on methanol steam reforming in tube reactor heated by simulated waste heat. Int J Hydrogen Energy 2017;42:26270–6. https://doi.org/10.1016/j.ijhydene.2017.09.002.
[96]. Gallucci F, Basile A. Co-current and counter-current modes for methanol steam reforming membrane reactor. Int J Hydrogen Energy. 2006;31:2243–9. https://doi.org/10.1016/j.ijhydene.2006.05.007.
[97]. Thermal properties of platinum. Available online: https://material-properties.org/platinum-thermal-properties-melting-point-thermal-conductivity-expansion/. (accessed on 11 November 2022).
[98]. Specific heat of platinum. Available online: https://www.nuclear-power.com/platinum-specific-heat-latent-heat-vaporization-fusion/. (accessed on 11 November 2022).
[99]. Wang X, Qiao L, Zhang L. Analysis of the causes of the cracking of tube bundles of 316L stainless steel Shell-and-Tube heat exchanger. Eng Fail Anal 2022;139:106484. https://doi.org/10.1016/j.engfailanal.2022.106484.
[100]. August A, Reiter A, Kneer A, Selzer M, Nestler B. Effective Thermal Conductivity of Composite Materials Based on Open Cell Foams. Heat Mass Transf 2018;2:33–45.
[101]. Specific heat of materials. Available online: https://theengineeringmindset.com/specific-heat-capacity-of-materials/. (accessed on 11 November 2022).
[102]. Density of stainless steel. Available online: https://www.thyssenkrupp-materials.co.uk/density-of-stainless-steel. (accessed on 11 November 2022).
[103]. Sasmoko, Lee S-W, Bhavanari M, Wijayanti W, Osman N, Tseng C-J. System analysis of a protonic ceramic fuel cell and gas turbine hybrid system with methanol reformer. Int J Hydrogen Energy 2022. https://doi.org/10.1016/j.ijhydene.2022.06.220.
[104]. Sasmoko, Lee S-W, Bhavanari M, Wijayanti W, Wardana ING, Tseng C-J. Thermodynamic Analysis of Three Internal Reforming Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems. Appl Sci 2022;12:11140. https://www.mdpi.com/2076-3417/12/21/11140.
[105]. Wijayanti W, Kusumastuti R, Sasmoko, Sasongko MN. A numerical study of proton exchange membrane fuel cell performances affected by various porosities of gas difussion layer materials. EasternEuropean J Enterp Technol 2020;1:65–75. https://doi.org/10.15587/1729-4061.2020.181442.
[106]. Wijayanti W, Musyaroh, Sasongko MN, Kusumastuti K, Sasmoko. Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics. Case Stud Therm Eng 2021;28:101625. https://doi.org/10.1016/j.csite.2021.101625.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明