博碩士論文 105389602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.182.179
姓名 芭瑞斯(Bharath Umesh)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 電解質的濃度效應與複合式材料的製備應用於鋰離子電池之矽負極
(Development of Silicon based Anode for Lithium-Ion Batteries: Effect of Salt Concentration in Electrolytes, and Composite Materials Preparation)
相關論文
★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-11以後開放)
摘要(中) 鋰離子電池 (LIBs) 為目前儲能技術的主流。在商用鋰電池中的石墨負極因具有層狀結構,使鋰離子能在充放電過程中藉由電解質的傳輸進入石墨層中進行反應。基於鋰離子電池的技術成熟,目前已經能擴展到電動汽車市場和大規模電網系統中。因此,需要更高能量密度的電池。為了達到這項需求,替換正極和負極中活性物質是必要的。電解質也將承受較大的電位差,在低電位和高電位下都會進行分解,形成一鈍化層,稱之為固態電解質介面層 (SEI)。
在此,我們研究了電解質的濃度效應,發現雙(氟磺酰基)亞胺鋰(LiFSI)濃度對於碳酸亞乙酯(EC)/碳酸二乙酯(DEC)電解質中矽負極的電容量、高速性能和循環穩定性與氟代碳酸亞乙酯 (FEC)電解質中得到相反的結果。透過拉曼光譜、穿透式電子顯微鏡、電化學阻抗光譜和恆電流間歇滴定技術對該結果進行了系統性的分析。同時,透過X 射線光電子能譜分析對固液界面化學進行了詳細的研究。發現當電解質中有適合的 LiFSI 濃度時,在EC/DE電解質中發生的鋁腐蝕現象在FEC電解質中可以被有效地抑制。
在第二項研究中,將使用高電導率、良好的高維穩定性的複合式負極(Si/CNT/G)作為鋰離子電池的高能量密度負極材料,電解質為由醚側鏈吡咯烷鎓、不對稱酰亞胺和高 Li+ 濃度組成的離子液體(IL)。這種電解液首次使用於矽基鋰離子電池。醚基的分解會產生有機成分形成SEI。而高濃度的 Li+ 會促進(氟磺酰基)(三氟甲磺酰基)酰亞胺 (FTFSI-) 陰離子的分解,產生富含 LiF- 和 Li3N 的 SEI層。具備有機-無機平衡的 SEI 層是 Si/CNT/G 負極有優異充放電性能的原因。 FTFSI− 陰離子對鋁基板有較低的腐蝕性,並與 LiNi0.8Co0.1Mn0.1O2 (NCM-811) 正極具有高相容性。在 4.5 V 的高電壓下, NCM-811 在高 Li+ 轉移數 N-甲氧基乙基-N-甲基吡咯烷鎓/FTFSI IL 電解質中具有良好的可逆電容量和循環穩定性。差示掃描量熱法用於檢測脫鋰 NCM-811 與各種電解質之間的界面放熱反應。
為了克服矽負極中機械劣化和低鋰擴散速率的問題,我們製備出一種透過一氧化氮下熱處理的富矽氮化矽 (Si/SiN)。Si/SiN 奈米顆粒可透過Si3N4以及在充放電過程中於原位形成的 Li3N來提高機械穩定性與離子導電率進而改善矽負極的電化學性能。Si/SiN奈米顆粒成功地表現出優異的電化學性能,包括良好的循環穩定性和高速維持率。
摘要(英) Lithium-ion batteries (LIBs) are currently the dominant energy storage technology, current commercial lithium ion battery utilizes graphite anode which have intercalation of lithium between the layered structure. The lithium ions are transported through the electrolyte during the charge/discharge process. LIBs have now made inroads into the electric vehicle sector and large-scale grid storage, both of which require batteries with significantly higher energy densities due to their success. Alternative anode and cathode chemistries are required to meet this demand. As a result, the electrolyte will be under a lot of strain, and it will decompose at both low and high potentials to form a passivation layer known as the solid electrolyte interphase (SEI).
Here, in this work we investigate moderately concentrated electrolytes and find that the effects of lithium bis(fluorosulfonyl)imide (LiFSI) concentration on the capacity, rate capability, and cycling stability of Si anodes in an ethylene carbonate (EC)/diethyl carbonate (DEC) mixed electrolyte are found to be opposite to those in a fluoroethylene carbonate (FEC) electrolyte in this study. The reasons for these observations are investigated using Raman spectroscopy, transmission electron microscopy, electrochemical impedance spectroscopy, and the galvanostatic intermittent titration technique. The solid electrolyte interphase chemistry is investigated in detail using an X-ray photoelectron spectroscopy investigation. Al corrosion that occurs with EC/DEC-based electrolytes can be efficiently reduced with FEC-based electrolytes if an acceptable LiFSI concentration is used.
The compatibility of a prepared ionic liquid (IL) electrolyte containing ether-side-chain pyrrolidinium, asymmetric imide, and a high Li+ fraction with a high conductivity, high dimensional stability composite anode (denoted as Si/CNT/G) as a high energy density anode material for LIBs is studied in the second study of this thesis. This is the first time this electrolyte has been used in Si-based Li-ion batteries. Organic components are formed when the ether groups decompose to form a solid electrolyte interphase (SEI). Because of the high Li+ concentration, the (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI−) anions decompose, resulting in a LiF and Li3N-rich SEI. The Si/CNT/G anode′s exceptional charge-discharge characteristics are due to the organic-inorganic balanced SEI. The FTFSI− anions are non-corrosive to the Al current collector and have a high compatibility with the LiNi0.8Co0.1Mn0.1O2 (NCM-811) cathode. NCM-811 in the high-Li+-fraction N-methoxyethyl-N-methylpyrrolidinium/FTFSI IL electrolyte exhibits remarkable reversible capacity and cycle stability when charged upto 4.5 V. The interfacial exothermic interactions between the delithiated NCM-811 and various electrolytes are investigated using differential scanning calorimetry.
In the third section of this thesis, we describe a Si-rich silicon nitride (Si-SiNx) synthesized via heat treatment under gaseous nitric oxide (NO) to alleviate the main inherent difficulties of Si anodes, such as mechanical deterioration and slow Li+ diffusion. During charge/discharge, the produced Si-SiNx nanoparticles successfully change the inherent electrochemical properties of the Si anode by enhancing mechanical stability and ionic conductivity with Si3N4 and in-situ generated Li3N. Si-SiNx nanoparticles have shown enhanced battery performance, including high rate capability and cycling stability.
關鍵字(中) ★ 鋰離子電池
★ 矽陽極
★ 電解質
關鍵字(英) ★ Li-ion batteries
★ Silicon anode
★ Electrolytes
論文目次 Table of Contents

摘要 i
Abstract iii
Dedication v
Acknowledgments vi
Table of Contents vii
List of Figures x
List of Tables xvi
Chapter 1. Motivation and outlines 1
Chapter 2. General research background 4
2.1. Li-ion batteries 5
2.2. Anode materials 7
2.3. Cathode materials 9
2.4. Electrolytes for LIBs 10
2.5. The solid electrolyte interphase 11
2.6. Salts and solvents 12
2.7. High concentration electrolytes 14
2.8. Ionic liquids 15
2.9. Concerns regarding battery electrolytes 15
2.10. Current efforts in electrolyte research 17
Chapter 3. Literature review 18
3.1. Silicon as anode material and challenges 18
3.2. Carbon coated silicon anodes 20
3.3. Binders 21
3.4. Electrolytes and additives for silicon anode 22
3.5. References 26
Chapter 4. Moderate-concentration fluorinated electrolyte for high-energy density Si//LiNi0.8Co0.1Mn0.1O2 batteries 40
4.1. Introduction 40
4.2. Experimental section 43
4.3. Result and discussion 45
4.4. Summary 67
4.5. References 68
Chapter 5. High-Li+-fraction ether-side-chain pyrrolidinium asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries 76
5.1. Introduction 76
5.2. Experimental section 79
5.3. Results and discussion 81
5.4. Summary 102
5.5. References 103
Chapter 6. Nitrogenation of Si-based anodes. 112
6.1. Introduction 112
6.2. Experimental section 115
6.3. Results and discussion 117
6.4. Summary 141
6.5. References 142
Chapter 7. Conclusions and future work 146
7.1. Conclusions 146
7.2. Future work 148
Vita 149
List of publications 149
參考文獻 (1) Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable recycling technology for li-ion batteries and beyond: challenges and future prospects. Chem.Rev. 2020, 120 (14), 7020-7063.
(2) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548 (7665), 74-77.
(3) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334 (6058), 928-35.
(4) Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat.Mater. 2011, 10 (12), 911-21.
(5) Kaltenbrunner, M.; White, M. S.; Glowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3 (1), 770.
(6) Energy, G., CO2 Status report—the latest trends in energy and emissions in 2018. International energy agency. 2019.
(7) Energy, G. J. I. P., France. CO2 status Report. 2019.
(8) Gür, T. M.; Science, E. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11 (10), 2696-2767.
(9) Song, S. H.; Ahn, K.; Kanatzidis, M. G.; Alonso, J. A.; Cheng, J. G.; Goodenough, J. B. Effect of an internal electric field on the redox energies of ALnTiO4 (A= Na or Li, Ln= Y or Rare-Earth). Chem. Mater. 2013, 25 (19), 3852-3857.
(10) Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23 (15), 1695-715.
(11) Mo, F.; Chen, Z.; Liang, G.; Wang, D.; Zhao, Y.; Li, H.; Dong, B.; Zhi, C. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn‐MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 2020, 10 (16), 2000035.
(12) Li, C.; Zhang, Q.; Li, T.; He, B.; Man, P.; Zhu, Z.; Zhou, Z.; Wei, L.; Zhang, K.; Hong, G. J. Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. J. Mater. Chem. A 2020, 8 (6), 3262-3269.
(13) (Cheng, X.; Yang, S.; Cao, B.; Tao, X.; Chen, Z. Single crystal perovskite solar cells: development and perspectives. Adv. Funct. Mater. 2020, 30 (4), 1905021.
(14) You, P.; Li, G. J.; Tang, G. Q.; Cao, J. P.; Yan, F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 2020, 13 (4), 1187-1196.
(15) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-7.
(16) (Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat.Mater. 2005, 4 (6), 455-9.
(17) Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486 (7401), 43-51.
(18) Wang, Y.; Diaz, D. F. R.; Chen, K. S.; Wang, Z.; Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells–A review. Mater. Today 2020, 32, 178-203.
(19) Asset, T.; Atanassov, P. Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule 2020, 4 (1), 33-44.
(20) Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11 (1), 1550.
(21) Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recycl. 2020, 168, 105249.
(22) Pillot, C. The rechargeable battery market and main trends 2014–2025, 31st International Battery Seminar & Exhibit, 2015, 5-7.
(23) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull 1980, 15 (6), 783-789.
(24) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x⩽ 1): A new cathode material for batteries of high energy density. Solid State Ion. 1981, 3, 171-174.
(25) Goodenough, J. B.; Mizuchima, K., Electrochemical cell with new fast ion conductors. Google Patents: 1981.
(26) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy 2011, 171-179.
(27) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-7.
(28) Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22 (3), 587-603.
(29) Abraham, K. M. Prospects and Limits of Energy Storage in Batteries. J. Phys. Chem. Lett. 2015, 6 (5), 830-44.
(30) Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10 (2), 435-459.
(31) Wu, F.; Borodin, O.; Yushin, G. In situ surface protection for enhancing stability and performance of conversion-type cathodes. MRS Energy & Sustainability, 2017, 4.
(32) Lewis, G. N.; Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 1913, 35 (4), 340-344.
(33) Besenhard, J. O. The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 1976, 14 (2), 111-115.
(34) Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443.
(35) Ohzuku, T.; Iwakoshi, Y.; Sawai, K. J. Formation of lithium‐graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 1993, 140 (9), 2490.
(36) De las Casas, C.; Li, W. J. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74-85.
(37) Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45 (12), 3479-563.
(38) Zheng, M.; Tang, H.; Li, L.; Hu, Q.; Zhang, L.; Xue, H.; Pang, H. Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries. Adv. Sci. 2018, 5 (3), 1700592.
(39) Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (1), 13-24.
(40) Osiak, M.; Geaney, H.; Armstrong, E.; O′Dwyer, C. Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2014, 2 (25), 9433-9460.
(41) Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium batteries. In Lithium Batteries; Springer, 2016, 29-68.
(42) Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195 (4), 939-954.
(43) Arumugam, R. S.; Ma, L.; Li, J.; Xia, X.; Paulsen, J.; Dahn, J. R. Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of Li [Ni0. 6Mn0. 2Co0. 2] O2/graphite cells. J. Electrochem. Soc. 2016, 163 (13), A2531.
(44) Wang, D. Y.; Xia, J.; Ma, L.; Nelson, K.; Harlow, J.; Xiong, D.; Downie, L.; Petibon, R.; Burns, J.; Xiao, A. A systematic study of electrolyte additives in Li [Ni1/3Mn1/3Co1/3]O2 (NMC)/graphite pouch cells. J. Electrochem. Soc. 2014, 161 (12), A1818.
(45) Hy, S.; Liu, H. D.; Zhang, M. H.; Qian, D. N.; Hwang, B. J.; Meng, Y. S. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 2016, 9 (6), 1931-1954.
(46) Hy, S.; Su, W. N.; Chen, J. M.; Hwang, B. J. Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2 for Lithium-Ion Batteries. J. Phys. Chem. C 2012, 116 (48), 25242-25247.
(47) Hy, S.; Felix, F.; Rick, J.; Su, W.-N.; Hwang, B. J. Direct In situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li [Ni x Li (1–2 x)/3Mn (2–x)/3] O2 (0≤ x≤ 0.5). J. Am. Chem. Soc. 2014, 136 (3), 999-1007.
(48) Liu, H. D.; Qian, D. N.; Verde, M. G.; Zhang, M. H.; Baggetto, L.; An, K.; Chen, Y.; Carroll, K. J.; Lau, D.; Chi, M. F.; Veith, G. M.; Meng, Y. S. Understanding the Role of NH4F and Al2O3 Surface Co-modification on Lithium-Excess Layered Oxide Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 2015, 7 (34), 19189-19200.
(49) Liu, H.; Huang, J.; Qian, D.; Hy, S.; Fang, C.; Luo, J.; Meng, Y. S. Communication—enhancing the electrochemical performance of lithium-excess layered oxide Li1. 13Ni0. 3Mn0. 57O2 via a facile nanoscale surface modification. J. Electrochem. Soc.2016, 163 (6), A971.
(50) Allen, J. L.; Thompson, T.; Sakamoto, J.; Becker, C. R.; Jow, T. R.; Wolfenstine, J. Transport properties of LiCoPO4 and Fe-substituted LiCoPO4. J. Power Sources 2014, 254, 204-208.
(51) Cho, H. M.; Chen, M. V.; MacRae, A. C.; Meng, Y. S. Effect of Surface Modification on Nano-Structured LiNi0.5Mn1.5O4 Spinel Materials. ACS Appl. Mater. Interfaces 2015, 7 (30), 16231-16239.
(52) Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-417.
(53) Ma, L.; Xia, J.; Dahn, J. Improving the high voltage cycling of Li [Ni0. 42Mn0. 42Co0. 16] O2 (NMC442)/graphite pouch cells using electrolyte additives. J. Electrochem. Soc. 2014, 161 (14), A2250.
(54) Xiong, D. J.; Petibon, R.; Nie, M.; Ma, L.; Xia, J.; Dahn, J. R. Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage. J. Electrochem. Soc. 2016, 163 (3), A546-A551.
(55) Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2012, 28 (1), 965-76.
(56) Chen, L. B.; Wang, K.; Xie, X. H.; Xie, J. Y. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 2007, 174 (2), 538-543.
(57) Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; Armand, M.; Zhou, Z. B. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J. Power Sources 2011, 196 (7), 3623-3632.
(58) Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J.; Kinoshita, K. J. E.; Letters, S. S. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. 2001, 4 (4), A42.
(59) Lux, S. F.; Lucas, I. T.; Pollak, E.; Passerini, S.; Winter, M.; Kostecki, R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. commun. 2012, 14 (1), 47-50.
(60) Philippe, B.; Dedryvere, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. Improved performances of nanosilicon electrodes using the salt lifsi: a photoelectron spectroscopy study. J. Am. Chem. Soc. 2013, 135 (26), 9829-9842.
(61) Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. RSC Adv. 2016, 6 (28), 23327-23334.
(62) Nie, M.; Lucht, B. L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries. J. Electrochem. Soc. 2014, 161 (6), A1001-A1006.
(63) Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of Surface-Films Formed on Lithium in Propylene Carbonate Solutions. J. Electrochem. Soc. 1987, 134 (7), 1611-1620.
(64) Peled, E. Film Forming Reaction at the Lithium Electrolyte Interface. J. Power Sources 1983, 9 (3-4), 253-266.
(65) Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144 (8), L208-L210.
(66) Xu, Z. X.; Yang, J.; Li, H. P.; Nuli, Y. N.; Wang, J. L. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 2019, 7 (16), 9432-9446.
(67) Yamada, Y.; Yamada, A. Review-Superconcentrated Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2015, 162 (14), A2406-A2423.
(68) Jeong, S. K.; Inaba, M.; Iriyama, Y.; Abe, T.; Ogumi, Z. J. E.; Letters, S. S. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem. Solid-State Lett. 2002, 6 (1), A13.
(69) Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136 (13), 5039-46.
(70) Yamada, Y.; Takazawa, Y.; Miyazaki, K.; Abe, T. Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium Ion. J. Phys. Chem. C 2010, 114 (26), 11680-11685.
(71) Yamada, Y.; Yaegashi, M.; Abe, T.; Yamada, A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 2013, 49 (95), 11194-6.
(72) Yamada, Y.; Usui, K.; Chiang, C. H.; Kikuchi, K.; Furukawa, K.; Yamada, A. General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes. ACS Appl. Mater. Interfaces 2014, 6 (14), 10892-10899.
(73) Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7 (1), 12032.
(74) Ma, L.; Glazier, S.; Petibon, R.; Xia, J.; Peters, J. M.; Liu, Q.; Allen, J.; Doig, R.; Dahn, J. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J. Electrochem. Soc. 2016, 164 (1), A5008.
(75) Doyle, M.; Fuller, T. F.; Newman, J. The Importance of the Lithium Ion Transference Number in Lithium Polymer Cells. Electrochim. Acta 1994, 39 (13), 2073-2081.
(76) Ma, T.; Xu, G. L.; Li, Y.; Wang, L.; He, X.; Zheng, J.; Liu, J.; Engelhard, M. H.; Zapol, P.; Curtiss, L. A.; Jorne, J.; Amine, K.; Chen, Z. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. J. Phys. Chem. Lett. 2017, 8 (5), 1072-1077.
(77) McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 2014, 7 (1), 416-426.
(78) Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117 (10), 7190-7239.
(79) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Materials for Sustainable Energy 2011, 129-137.
(80) MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A. Energy applications of ionic liquids. Energy Environ. Sci. 2014, 7 (1), 232-250.
(81) Shi, M.; Xiao, P.; Lang, J.; Yan, C.; Yan, X. Porous g-C3N4 and MXene Dual-Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid. Adv. Sci. 2020, 7 (2), 1901975.
(82) Liu, Y. C.; Narayanasamy, M.; Yang, C.; Shi, M. J.; Xie, W.; Wu, H. Z.; Yan, C.; Hou, H.; Guo, Z. H. High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. J. Mater. Res. 2019, 34 (17), 3030-3039.
(83) Hammami, A.; Raymond, N.; Armand, M. Lithium-ion batteries: runaway risk of forming toxic compounds. Nature 2003, 424 (6949), 635-6.
(84) Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. Thermal runaway inhibitors for lithium battery electrolytes. J. Power Sources 2006, 161 (2), 1341-1345.
(85) Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4 (1), 56-72.
(86) Wang, D. K.; Zhou, C. L.; Cao, B.; Xu, Y. C.; Zhang, D. H.; Li, A.; Zhou, J. S.; Ma, Z. K.; Chen, X. H.; Song, H. H. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 2020, 24, 312-318.
(87) Wu, X. R.; Yu, C. H.; Li, C. C. Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries. Carbon 2020, 160, 255-264.
(88) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1 (4), 1-16.
(89) Jiantao, W.; Juanyu, Y.; Shigang, L. A Mini Review: Nanostructured Silicon-based materials for lithium-Ion battery. Nanosci. Nanotechnol. Asia 2016, 6, 3-27..

(90) Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
(91) Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6 (2), 1522-31..
(92) Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol 2008, 3 (1), 31-35.
(93) Park, S. W.; Kim, J. C.; Dar, M. A.; Shim, H. W.; Kim, D. W. Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes. J. Alloys Compd. 2017, 698, 525-531.
(94) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 2012, 12 (6), 3315-21.
(95) Mi, H. W.; Yang, X. D.; Li, Y. L.; Zhang, P. X.; Sun, L. N. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chem. Eng. J. 2018, 351, 103-109.
(96) Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5 (12), 1042-8.
(97) Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357 (6348), 279-283.
(98) Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y. N.; Wang, J. L.; Hirano, S. I. Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule 2018, 2 (5), 950-961.
(99) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 2011, 334 (6052), 75-79.
(100) Choi, N. S.; Yew, K. H.; Choi, W. U.; Kim, S. S. Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J. Power Sources 2008, 177 (2), 590-594.
(101) Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2010, 2 (11), 3004-10.
(102) Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. Engl. 2012, 51 (35), 8762-7.
(103) Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Enhanced ion conductivity in conducting polymer binder for high‐performance silicon anodes in advanced lithium‐ion batteries. Adv. Energy Mater. 2018, 8 (11), 1702314.
(104) Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano Lett. 2014, 14 (2), 864-870.
(105) Peled, E.; Menkin, S. Review-SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164 (7), A1703-A1719.
(106) Sina, M.; Alvarado, J.; Shobukawa, H.; Alexander, C.; Manichev, V.; Feldman, L.; Gustafsson, T.; Stevenson, K. J.; Meng, Y. S. Direct Visualization of the Solid Electrolyte Interphase and Its Effects on Silicon Electrochemical Performance. Adv. Mater. Interfaces 2016, 3 (20), 1600438.
(107) Vogl, U. S.; Lux, S. F.; Crumlin, E. J.; Liu, Z.; Terborg, L.; Winter, M.; Kostecki, R. The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode. J. Electrochem. Soc. 2015, 162 (4), A603-A607.
(108) Jin, Y.; Kneusels, N. H.; Marbella, L. E.; Castillo-Martinez, E.; Magusin, P.; Weatherup, R. S.; Jonsson, E.; Liu, T.; Paul, S.; Grey, C. P. Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. J. Am. Chem. Soc. 2018, 140 (31), 9854-9867.
(109) Xu, Z. X.; Yang, J.; Qian, J.; Zhang, T.; Nuli, Y. N.; Chen, R. J.; Wang, J. L. Bicomponent Electrolyte Additive Excelling Fluoroethylene Carbonate for High Performance Si-Based Anodes And Lithiated Si-S Batteries. Energy Storage Mater. 2019, 20, 388-394.
(110) Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M. R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5 (5), 386-397.
(111) Piper, D. M.; Evans, T.; Leung, K.; Watkins, T.; Olson, J.; Kim, S. C.; Han, S. S.; Bhat, V.; Oh, K. H.; Buttry, D. A.; Lee, S. H. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat. Commun. 2015, 6 (1), 1-10.
(112) Budi, A.; Basile, A.; Opletal, G.; Hollenkamp, A. F.; Best, A. S.; Rees, R. J.; Bhatt, A. I.; O′Mullane, A. P.; Russo, S. P. Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N-Methyl-N-Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide. J. Phys. Chem. C. 2012, 116 (37), 19789-19797.
(113) Kim, G. T.; Kennedy, T.; Brandon, M.; Geaney, H.; Ryan, K. M.; Passerini, S.; Appetecchi, G. B. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. ACS Nano 2017, 11 (6), 5933-5943.
(114) Wang, Y. D.; Zaghib, K.; Guerfi, A.; Bazito, F. F. C.; Torresi, R. M.; Dahn, J. R. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 2007, 52 (22), 6346-6352.
(115) Usui, H.; Yamamoto, Y.; Yoshiyama, K.; Itoh, T.; Sakaguchi, H. Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery. J. Power Sources 2011, 196 (8), 3911-3915.
(116) Shimizu, M.; Usui, H.; Matsumoto, K.; Nokami, T.; Itoh, T.; Sakaguchi, H. Effect of Cation Structure of Ionic Liquids on Anode Properties of Si Electrodes for LIB. J. Electrochem. Soc. 2014, 161 (12), A1765-A1771.

(117) Larcher, D.; Tarascon, J. M. Towards Greener and more Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19-29.
(118) Liu, J. Addressing the Grand Challenges in Energy Storage. Adv. Funct. Mater. 2013, 23, 924-928.
(119) Yang, B.; Wang, J.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Lan, C.; Yu, T. Applications of Battery/Supercapacitor Hybrid Energy Storage Systems for Electric Vehicles Using Perturbation Observer Based Robust Control. J. Power Sources 2020, 448, 227444.
(120) Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737.
(121) Jiantao, W.; Juanyu, Y.; Shigang, L. A Mini Review: Nanostructured Silicon-based Materials for Lithium-Ion Battery. Nanosci. Nanotechnol. Asia 2016, 6, 3-27.
(122) Scrosati, B.; Garche, J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195, 2419-2430.
(123) Lv, X. S.; Wei, W.; Huang, B. B.; Dai, Y. Achieving High Energy Density for Lithium-Ion Battery Anodes by Si/C Nanostructure Design. J. Mater. Chem. A 2019, 7, 2165-2171.
(124) Shi, J. L.; Xiao, D. D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X. D.; Yin, Y. X.; Yang, X. Q.; Guo, Y. G.; Gu, L.; Wan, L. J. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. Adv. Mater. 2018, 30, 1705575.
(125) Wang, B.; Li, X.; Qiu, T.; Luo, B.; Ning, J.; Li, J.; Zhang, X.; Liang, M.; Zhi, L. High Volumetric Capacity Silicon-Based Lithium Battery Anodes by Nanoscale System Engineering. Nano Lett. 2013, 13, 5578-5584.
(126) Zuo, X. X.; Zhu, J.; Buschbaum, P. M.; Cheng, Y. J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113-143.
(127) Andersen, H. F.; Foss, C. E. L.; Voje, J.; Tronstad, R.; Mokkelbost, T.; Vullum, P. E.; Ulvestad, A.; Kirkengen, M.; Maehlen, J. P. Silicon-Carbon Composite Anodes from Industrial Battery Grade Silicon. Sci. Rep. 2019, 9, 14814.
(128) Ashuri, M.; He, Q.; Shaw, L. L. Silicon as a Potential Anode Material for Li-Ion Batteries: Where Size, Geometry and Structure Matter. Nanoscale 2016, 8, 74-103.
(129) Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2, 1645-1651.
(130) Franco Gonzalez, A.; Yang, N. H.; Liu, R. S. Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. J. Phy. Chem. C 2017, 121, 27775-27787.
(131) Gu, M.; He, Y.; Zheng, J.; Wang, C. Nanoscale Silicon as Anode for Li-Ion Batteries: The Fundamentals, Promises, and Challenges. Nano Energy 2015, 17, 366-383.
(132) Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Arrays of Sealed Silicon Nanotubes as Anodes for Lithium-Ion Batteries. Nano Lett. 2010, 10, 1710-1716.
(133) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid-Electrolyte Interphase Control. Nat. Nanotechnol. 2012, 7, 310-315.
(134) Luo, F.; Liu, B. N.; Zheng, J. Y.; Chu, G.; Zhong, K. F.; Li, H.; Huang, X. J.; Chen, L. Q. Review-Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2509-A2528.
(135) Wu, P. F.; Guo, C. Q.; Han, J. T.; Yu, K. R.; Dong, X. C.; Yue, G. H.; Yue, H. J.; Guan, Y.; Liu, A. H. Fabrication of Double Core-Shell Si-Based Anode Materials with Nanostructure for Lithium-Ion Battery. RSC Advances 2018, 8, 9094-9102.
(136) Kwon, T. W.; Choi, J. W.; Coskun, A. The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes. Chem. Soc. Rev. 2018, 47, 2145-2164.
(137) Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503-11618.
(138) Yamada, Y.; Yamada, A. Review—Superconcentrated Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2015, 162, A2406-A2423.
(139) Rath, P. C.; Wu, C. J.; Patra, J.; Li, J.; Lee, T. C.; Yeh, T. J.; Chang, J. K. Hybrid Electrolyte Enables Safe and Practical 5 V LiNi0.5Mn1.5O4 Batteries. J. Mater. Chem. A 2019, 7, 16516-16525.
(140) Xie, J. D.; Patra, J.; Rath, P. C.; Liu, W. J.; Su, C. Y.; Lee, S. W.; Tseng, C. J.; Gandomi, Y. A.; Chang, J. K. Highly Concentrated Carbonate Electrolyte for Li-Ion Batteries with Lithium Metal and Graphite Anodes. J. Power Sources 2020, 450, 227657 .
(141) Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J. H.; Tateyama, Y.; Yamada, A. Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. Chemelectrochem 2015, 2, 1687-1694.
(142) Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J. Research Progress Towards Understanding the Unique Interfaces Between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Adv. Sci. 2017, 4, 1700032.
(143) Chang, Z. H.; Wang, J. T.; Wu, Z. H.; Gao, M.; Wu, S. J.; Lu, S. G. The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte. ChemSusChem 2018, 11, 1787-1796.
(144) Zeng, G.; An, Y.; Xiong, S.; Feng, J. Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 23229-23235.
(145) Jia, H.; Zou, L.; Gao, P.; Cao, X.; Zhao, W.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X.; Li, Q.; Yi, R.; Zhang, X.; Wang, C.; Xu, Z.; Li, X.; Zhang, J. G.; Xu, W. High‐Performance Silicon Anodes Enabled By Nonflammable Localized High‐Concentration Electrolytes. Adv. Energy Mater. 2019, 9, 1900784.
(146) Patra, J.; Huang, H. T.; Xue, W.; Wang, C.; Helal, A. S.; Li, J.; Chang, J. K. Moderately Concentrated Electrolyte Improves Solid–Electrolyte Interphase and Sodium Storage Performance of Hard Carbon. Energy Storage Mater. 2019, 16, 146-154.
(147) Doi, T.; Shimizu, Y.; Hashinokuchi, M.; Inaba, M. Dilution of Highly Concentrated LiBF4/Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi0.5Mn1.5O4 Positive Electrodes. J. Electrochem. Soc. 2017, 164, A6412-A6416.
(148) Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J. G.; Xu, W. Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. Chem 2018, 4, 1877-1892.
(149) Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q.; Xiao, X. Z.; Chen, L. X.; Wang, C. S. All-Temperature Batteries Enabled by Fluorinated Electrolytes with Non-Polar Solvents. Nat. Energy 2019, 4, 882-890.
(150) Zhang, Z. C.; Hu, L. B.; Wu, H. M.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 2013, 6, 1806-1810.
(151) Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries. Proc. Natl. Acad. Sci. U S A 2018, 115, 1156-1161.
(152) Brown, Z. L.; Jurng, S.; Nguyen, C. C.; Lucht, B. L. Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes. ACS Appl. Energy Mater. 2018, 1, 3057-3062.
(153) Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and Reality of Ni-Rich Cathode for Commercialization. Adv. Energy Mater. 2018, 8, 1702028.
(154) Laveda, J. V.; Low, J. E.; Pagani, F.; Stilp, E.; Dilger, S.; Baran, V.; Heere, M.; Battaglia, C. Stabilizing Capacity Retention in NMC8-11/Graphite Full Cells via TMSPi Electrolyte Additives. ACS Appl. Energy Mater. 2019, 2, 7036-7044.
(155) Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C. Degradation Mechanisms and Mitigation Strategies of Nickel-rich NMC-based Lithium-Ion Batteries. Electrochem. Energy Rev. 2019, 3, 43-80.
(156) Weng, Y. T.; Liu, H. W.; Pei, A.; Shi, F.; Wang, H.; Lin, C. Y.; Huang, S. S.; Su, L. Y.; Hsu, J. P.; Fang, C. C.; Cui, Y.; Wu, N. L. An Ultrathin Ionomer Interphase for High Efficiency Lithium Anode in Carbonate Based Electrolyte. Nat. Commun. 2019, 10, 5824.
(157) Lin, Y. M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries. Chem. Commun. 2012, 48, 7268-70.
(158) Zhang, L.; Zhang, K.; Shi, Z.; Zhang, S. LiF as an Artificial SEI Layer to Enhance the High-Temperature Cycle Performance of Li4Ti5O12. Langmuir 2017, 33, 11164-11169.
(159) Yan, G.; Li, X.; Wang, Z.; Guo, H.; Peng, W.; Hu, Q. Lithium Difluoro(Oxalato)Borate as an Additive to Suppress the Aluminum Corrosion in Lithium Bis(Fluorosulfony)Imide-Based Nonaqueous Carbonate Electrolyte. J Solid State Electrochem 2015, 20, 507-516.
(160) Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Advances and Issues in Developing Salt-Concentrated Battery Electrolytes. Nat. Energy 2019, 4, 269-280.
(161) Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal Stability and Flammability of Electrolytes for Lithium-Ion Batteries. J. Power Sources 2011, 196, 4801-4805.
(162) Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N. Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF6/EC:EMC Electrolyte. J. Phys. Chem. B 2005, 109, 17567-17573.
(163) Aurbach, D.; Zaban, A.; Schechter, Y. E.; Eli, E.; Zinigrad, B. Markosky. The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. J. Electrochem. Soc. 1995, 142, 2873-2882.
(164) Aurbach, D.; Daroux M. L.; Faguy P. W.; Yeager E. Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. J. Electrochem. Soc. 1987, 134, 1611-1620.
(165) Weppner, W.; Huggins R. A. Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb. J. Electrochem. Soc. 1977, 124, 1569-1578.
(166) Lee, Y. S.; Ryu, K. S. Study of the Lithium Diffusion Properties and High Rate Performance of TiNb6O17 as an Anode in Lithium Secondary Battery. Sci. Rep. 2017, 7, 16617.
(167) Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L. A New Ether-based Electrolyte for Dendrite-Free Lithium-Metal based Rechargeable Batteries. Sci. Rep. 2016, 6, 21771.
(168) Takada, K.; Yamada, Y.; Watanabe, E.; Wang, J.; Sodeyama, K.; Tateyama, Y.; Hirata, K.; Kawase, T.; Yamada, A. Unusual Passivation Ability of Superconcentrated Electrolytes Toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 33802-33809.
(169) Luo, X. F.; Chiang, W. H.; Su, C. Y.; Wu, T. Y.; Majumder, S. B.; Chang, J. K. Tuning of Na+ Concentration in an Ionic Liquid Electrolyte to Optimize Solid-Electrolyte Interphase at Microplasma-Synthesized Graphene Anode for Na-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 16682-16689.
(170) Lee, J.; Kim, Y. J.; Jin, H. S.; Noh, H.; Kwack, H.; Chu, H.; Ye, F.; Lee, H.; Kim, H. T. Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries. ACS Omega 2019, 4, 3220-3227.
(171) Xiong, S. Z.; Xie, K.; Blomberg, E.; Jacobsson, P.; Matic, A. Analysis of the Solid Electrolyte Interphase Formed with an Ionic Liquid Electrolyte for Lithium-Sulfur Batteries. J. Power Sources 2014, 252, 150-155.
(172) Shkrob, I. A.; Wishart, J. F.; Abraham, D. P. What Makes Fluoroethylene Carbonate Different? J. Phy. Chem. C 2015, 119, 14954-14964.
(173) Zhang, Y.; Krishnamurthy, D.; Viswanathan, V. Engineering Solid Electrolyte Interphase Composition by Assessing Decomposition Pathways of Fluorinated Organic Solvents in Lithium Metal Batteries. J. Electrochem. Soc. 2020, 167, 070554.
(174) Song, J.; Xiao, B.; Lin, Y.; Xu, K.; Li, X. Interphases in Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703082.
(175) Xiao, A.; Yang, L.; Lucht, B. L.; Kang, S. H.; Abraham, D. P. Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes. J. Electrochem. Soc. 2009, 156, A318–A327.
(176) Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte. J. Phys. Chem. C 2014, 118, 14091-14097.
(177) Ahamad, S.; Gupta, A. Understanding Composition and Morphology of Solid-Electrolyte Interphase in Mesocarbon Microbeads Electrodes with Nano-Conducting Additives. Electrochim. Acta 2020, 341, 136015.
(178) Shi, Q.; Heng, S.; Qu, Q. T.; Gao, T.; Liu, W. J.; Hang, L.; Zheng, H. H. Constructing an Elastic Solid Electrolyte Interphase on Graphite: a Novel Strategy Suppressing Lithium Inventory Loss in Lithium-Ion Batteries. J. Mater. Chem. A 2017, 5, 10885-10894.
(179) Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H. T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Corrosion/Passivation of Aluminum Current Collector in Bis(Fluorosulfonyl) Imide-Based Ionic liquid for Lithium-Ion Batteries. Electrochem. Commun. 2012, 22, 1-3.
(180) Fan. E, Li. L, Wang. Z, Lin. J, Huang. Y, Yao. Y, Chen. R, Wu. F, Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev. 2020, 120, 7020–7063.
(181) Wu. F, Maier. J, Yu. Y, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev. 2020, 49, 1569–1614.
(182) Kim. T, Song. W, Son. D. Y, Ono. L. K, Qi. Y, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A 2019, 7, 2942–2964.
(183) Nguyen. T. X, Patra. J, Chang. J. K, Ting. J. M, High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance, J. Mater. Chem. A 2020, 8, 18963–18973.
(184) Li. H. Y, Tseng. C.M, Yang. C. H, Lee. T. C, Su. C.Y, Hsieh. C. T, Chang. J. K, Eco‐efficient synthesis of highly porous CoCO3 anodes from Supercritical CO2 for Li+ and Na+ Storage, ChemSusChem 2017, 10, 2464–2472.
(185) Asenbauer. J, Eisenmann. T, Kuenzel. M, Kazzazi. A, Chen. Z, Bresser. D. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustainable Energy Fuels, 2020, 4, 5387–5416.
(186) Wu. H, Cui. Y, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 2012, 7, 414–429.
(187) Zhu. B, Wang. X, Yao. P, Li. J, Zhu. J, Towards high energy density lithium battery anodes: silicon and lithium, Chem. Sci. 2019, 10, 7132–7148.
(188) Feng. K, Li. M, Liu. W, Kashkooli. A. G, Xiao. X, Cai. M, Chen. Z, Silicon‐based anodes for lithium‐ion batteries: from fundamentals to practical applications, Small 2018, 14, 1702737.
(189) Jin. Y, Zhu. B, Lu. Z, Liu. N, Zhu. J, Challenges and recent progress in the development of Si anodes for lithium‐ion battery, Adv. Energy Mater. 2017, 7, 1700715.
(190) Song. T, Xia. J, Lee. J. H, Lee. D. H, Kwon. M. S, Choi. J. M, Wu. J, Doo. S. K, Chang. H, Park. W. I, Zang. D. S, Kim. H, Huang. Y, Hwang. K. C, Rogers. J. A, Paik. U, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett. 2010, 10, 1710–1716.
(191) Gu. M, He. Y, Zheng. J. M, Wang. C. M, Nanoscale silicon as anode for Li-ion batteries: the fundamentals, promises, and challenges, Nano Energy 2015, 17, 366–383.
(192) Wu. H, Chan. G, Choi. J. W, Ryu. I, Yao. Y, McDowell. M. T, Lee. S. W, Jackson. A, Yang. Y, Hu. L, Cui. Y, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nat. Nanotechnol. 2012, 7, 310–315.
(193) Luo. F, Liu. B. N, Zheng. J. Y, Chu. G, Zhong. K. F, Li. H, Huang. X. J, Chen. L. Q, Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries, J. Electrochem. Soc. 2015, 162, A2509–A2528.
(194) Kwon. T. W, Choi. J. W, Coskun. A, The emerging era of supramolecular polymeric binders in silicon anodes, Chem. Soc. Rev. 2018, 47, 2145–2164.
(195) Watanabe. M, Thomas. M. L, Zhang. S, Ueno. K, Yasuda. T, Dokko. K, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev. 2017, 117, 7190–7239.
(196) Eftekhari. A, Liu. Y, Chen. P, Different roles of ionic liquids in lithium batteries, J. Power Sources 2016, 334, 221–239.
(197) Patra. J, Dahiya. P. P, Tseng. C. J, Fang. J, Lin. Y. W, Basu. S, Majumder. S, Chang. J. K, Electrochemical performance of 0.5 Li2MnO3–0.5 Li (Mn0.375Ni0.375Co0.25) O2 composite cathode in pyrrolidinium-based ionic liquid electrolytes, J. Power Sources 2015, 294, 22–30.
(198) Rath. P. C, Wu. C. J, Patra. J, Li. J, Lee. T. C, Yeh. T. J, Chang. J. K, Hybrid electrolyte enables safe and practical 5 V LiNi0.5Mn1.5O4 batteries, J. Mater. Chem. A 2019, 7, 16516–16525.
(199) Ramirez. N. S, Assresahegn. B. D, Torresi. R. M, Belanger. D, producing high-performing silicon anodes by tailoring ionic liquids as electrolytes, Energy Storage Mater. 2020, 25, 477–486.
(200) Domi. Y, Usui. H, Yamaguchi. K, Yodoya. S, Sakaguchi. H, Silicon-based anodes with long cycle life for lithium-ion batteries achieved by significant suppression of their volume expansion in ionic-liquid electrolyte, ACS Appl. Mater. Interfaces 2019, 11, 2950–2960.
(201) Piper. D. M, Evans. T, Leung. K, Watkins. T, Olson. J, Kim. S. C, Han. S, S, Bhat. V, Oh. K. K, Buttry. D. A, Lee. S. H, Stable silicon-ionic liquid interface for next-generation lithium-ion batteries, Nat Commun 2015, 6, 6230.
(202) Rath. P. C, Wang. Y. W, Patra. J, Umesh. B, Yeh. T. J, Okada. S, Li. J, Chang. J. K, Composition manipulation of bis(fluorosulfonyl)imide-based ionic liquid electrolyte for high-voltage graphite//LiNi0.5Mn1.5O4 lithium-ion batteries, Chem. Eng. J. 2021, 415 128904.
(203) Theivaprakasam. S, Girard. G, Howlett. P, Forsyth. M, Mitra. S, MacFarlane. D, Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes, NPJ Mater. Degrad. 2018, 2, 13.
(204) Gao. X, Wu. F, Mariani. A, Passerini. S, Concentrated ionic‐liquid‐based electrolytes for high‐voltage lithium batteries with improved performance at room temperature, ChemSusChem 2019, 12, 4185–4193.
(205) J. Reiter, S. Jeremias, E. Paillard, M. Winter, S. Passerini, Fluorosulfonyl-(trifluoromethanesulfonyl) imide ionic liquids with enhanced asymmetry, Phys. Chem. Chem. Phys. 2013, 15, 2565–2571.
(206) Tu. W, Szklarz. G, Adrjanowicz. K, Grzybowska. K, Kowalczuk. J. K, Paluch. M, Effect of cation n-Alkyl side-chain length, temperature, and pressure on the glass-transition dynamics and crystallization tendency of the [CnC1Pyrr]+[Tf2N]− ionic liquid family, J. Phys. Chem. C 2019, 123, 12623–12637.
(207) Kunze. M, Paillard. E, Jeong. S, Appetecchi. G. B, Schönhoff. M, Winter. M, Passerini. S, Inhibition of self-aggregation in ionic liquid electrolytes for high-energy electrochemical devices, J. Phys. Chem. C 2011, 115, 19431–19436.
(208) G. A. Giffin, Ionic liquid-based electrolytes for “beyond lithium” battery technologies, J. Mater. Chem. A 4 (2016) 13378–13389.
(209) Li. T, Yuan. X. Z, Zhang. L, Song. D, Shi. K, Bock. C, Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries, Electrochem. Energ. Rev. 2019, 3, 43–80.
(210) Appetecchi. G. B, Scaccia. S, Tizzani. C, Alessandrini. F, Passerini. S, Synthesis of hydrophobic ionic liquids for electrochemical applications, J. Electrochem. Soc. 2006, 153, A1685–A1691.
(211) Schipporeit. S, Mergel. D, Spectral decomposition of Raman spectra of mixed‐phase TiO2 thin films on Si and silicate substrates, J. Raman Spectrosc 2018, 49, 1217–1229.
(212) Jorio. A, Dresselhaus. M. S, Saito. R, Dresselhaus. G, Raman spectroscopy in graphene related systems, John Wiley & Sons, 2011.
(213) Peled. E, Menkin. S, SEI: past, present and future, J. Electrochem. Soc. 2017, 164, A1703–A1719.
(214) Giffin. G. A, Moretti. A, Jeong. S, Pilar. K, Brinkkötter. M, Greenbaum. S. G, Schönhoff. M, Passerini. S, Connection between lithium coordination and lithium diffusion in [Pyr12O1] [FTFSI] ionic liquid electrolytes, ChemSusChem 2018, 11, 1981–1989.
(215) N. Nakatani, K. Kishida, K. Nakagawa, Effect of SEI component on graphite electrode performance for li-ion battery using ionic liquid electrolyte, J. Electrochem. Soc. 2018, 165, A1621–A1625.
(216) Wu. C. J, Rath. P. C, Patra. J, Bresser. D, Passerini. S, Umesh. B, Dong. Q. F, Lee. T. C, Chang. J. K, Composition modulation of ionic liquid hybrid electrolyte for 5 V lithium-ion batteries, ACS Appl. Mater. Interfaces 2019, 11, 42049–42056.
(217) Philippe. B, Dedryvere. R, Gorgoi. M, Rensmo. H, Gonbeau. D, Edstrom. K, Improved performances of nano silicon electrodes using the salt LiFSI: A photoelectron spectroscopy study, J. Am. Chem. Soc. 2013, 135, 9829–9842.
(218) Umesh. B, Rath. P. C, Hernandha. R. F. H, Lin. J. Y, Majumder. S. B, Dong. Q. F, Chang. J. K, Moderate-concentration fluorinated electrolyte for high-energy-density Si//LiNi0.8Co0.1Mn0.1O2 batteries, ACS Sustain. Chem. Eng. 2020, 8, 16252–16261.
(219) Xie. J. D, Patra. J, Rath. P. C, Liu. W. J, Su. C. Y, Lee. S. W, Tseng. C. J, Gandomi. Y. A, Chang. J. K, Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes, J. Power Sources 2020, 450, 227657.
(220) Xu. K, Cresce. A. V, Lee. U, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir 2010, 26, 11538–11543.
(221) Lin. J, Peng. H, Kim. J. H, Wygant. B. R, Meyerson. M. L, Rodriguez. R, Liu. Y, Kawashima. K, Gu. D, Peng. D. L, Guo. H, Heller. A, Mullins. C. B, Lithium fluoride coated silicon nano columns as anodes for lithium ion batteries, ACS Appl. Mater. Interfaces 2020, 12, 18465–18472.
(222) Weber. I, Kim. J, Buchner. F, Schnaidt. J, Behm. R. J, Surface science and electrochemical model studies on the interaction of graphite and Li‐containing ionic liquids, ChemSusChem 2020, 13, 2589–2601.
(223) Chen. K, Pathak. R, Gurung. A, Adhamash. E. A, Bahrami. B, He. Q, Qiao. H, Smirnova. A. L, Wu. J. J, Qiao. Q, Zhou. Y, Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes, Energy Storage Mater. 2019, 18, 389–396.
(224) Huang. W, Attia. P M, Wang. H, Renfrew. S. E, Jin. N, Das. S, Zhang. Z, Boyle. D. T, Li. Li, Bazant. M. J, Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy, Nano Lett. 2019, 19, 5140–5148.
(225) Shi. Q, Heng. S, Qu. Q, Gao. T, Liu. W, Hang. L, Zheng. H, Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries, J. Mater. Chem. A 2017, 5, 10885–10894.
(226) Gao. S, Sun. F, Liu. N, Yang. H, Cao. P. F, Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries–a review, Mater. Today 2020, 40, 140–159.
(227) Ahamad. S, Gupta. A, Understanding composition and morphology of solid-electrolyte interphase in mesocarbon microbeads electrodes with nano-conducting additives, Electrochim. Acta 2020, 341, 136015.
(228) Sun. H. H, A. Dolocan, Weeks. J. A, Rodriguez. R, A. Heller. A, Mullins. C. B, In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery, J. Mater. Chem. A 2019, 7, 17782–17789.
(229) Hosoya. K, Kamidaira. T, Tsuda. T, Imanishi. A, Haruta. M, Doi. T, Inaba. M, Kuwabata. S, Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems, Mater. Adv. 2020, 1, 625–631.
(230) Kühnel. R. S, Lübke. M, Winter. M, Passerini. S, Balducci. A, Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes, J. Power Sources 2012, 214, 178–184.
(231) Kankanamge. S. R. G, Kuroda. D. G, Molecular structure, chemical exchange, and conductivity mechanism of high concentration LiTFSI electrolytes, J. Phys. Chem. B 2020) 1965–1977.
(232) Sodeyama. K, Yamada, K. Aikawa, A. Yamada, Tateyama. Y, Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte, J. Phys. Chem. C 2014, 118, 14091–14097.
(233) Peng. C, Yang. L, Zhang. Z, Tachibana. K, Yang. Y, Zhao. S, Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes, Electrochim. Acta 2008, 53, 4764–4772.
(234) Meister. P, Qi. X, Kloepsch. R, Krämer. E, Streipert. B, Winter. M, T. Placke, Anodic behavior of the aluminum current collector in imide-based electrolytes: Influence of solvent, operating temperature, and native oxide-layer thickness, ChemSusChem 2017, 10, 804–814.
(235) Gao. H, Zeng. X, Hu. Y, Tileli. V, Li. L, Ren. Y, Meng. X, Maglia. F, Lamp. P, Kim. S. J, Amine. K, Chen. Z, Modifying the surface of a high-voltage lithium-ion cathode, ACS Appl. Energy Mater. 2018, 1, 2254–2260.
(236) Julien. C. M, Mauger. A, NCA, NCM811, and the route to Ni-richer lithium-ion batteries, Energies 2020, 13, 6363.
(237) Barkholtz. H. M, Preger. Y, Ivanov. S, Langendorf. J, Castro. L. T, Lamb. J, Chalamala. B, Ferreira. S. R, Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge, J. Power Sources 2019, 435 226777.
(238) Mueller. F, Loeffler. N, Kim. G. T, Diemant. T, Behm. R. J, Passerini. S, A lithium-ion battery with enhanced safety prepared using an environmentally friendly process, ChemSusChem 2016, 9 1290–1298.
(239) Kong. F, Liang. C, Wang. L, Zheng. Y, Perananthan. S, Longo. R. C, Ferraris. J. P, Kim. M, Cho. K, Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2‐based cathode materials, Adv. Energy Mater. 2019, 9, 1802586.
(240) Liu. C, Ma. X, Xu. F, Zheng. L, Zhang. H, Feng. W, Huang. X, Armand. M, Nie. J, Chen. H, Zhou. Z, Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties, Electrochim. Acta 2014, 149, 370–385.
(241) Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22 (3), 587-603.
(242) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-35.
(243) Tarascon, J. M.; Armand, M.; Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy 2011, 171-179.
(244) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21 (27), 9938-9954.
(245) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci 2011, 4 (9), 3243-3262.
(246) Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4 (11), 5387-5416.
(247) Hatchard, T.; Dahn, J. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004, 151 (6), A838.
(248) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-7.
(249) Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9 (1), 491-5.
(250) Li, S.; Niu, J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6 (1), 7872.
(251) Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9 (11), 3844-7.
(252) Lu, Z.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9 (3), 2540-7.
(253) Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5 (12), 1042-8.
(254) Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357 (6348), 279-283.
(255) Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2 (5), 950-961.
(256) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334 (6052), 75-79.
(257) Ezzedine, M.; Zamfir, M. R.; Jardali, F.; Leveau, L.; Caristan, E.; Ersen, O.; Cojocaru, C. S.; Florea, I. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13 (21), 24734-24746.
(258) Obrovac, M.; Christensen, L.; Le, D. B.; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154 (9), A849.
(259) Du, Z.; Hatchard, T.; Dunlap, R.; Obrovac, M. N. Combinatorial investigations of Ni-Si negative electrode materials for li-ion batteries. J. Electrochem. Soc. 2015, 162 (9), A1858.
(260) Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium‐ion battery. Adv. Energy Mater. 2017, 7 (23), 1700715.
(261) Chae, S.; Park, S.; Ahn, K.; Nam, G.; Lee, T.; Sung, J.; Kim, N.; Cho, J. Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy Environ. Sci 2020, 13 (4), 1212-1221.
(262) Guzman, R. C.; Yang, J.; Cheng, M. M. C.; Salley, S. O.; Ng, K. S. High capacity silicon nitride-based composite anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2 (35), 14577-14584.
(263) Riley, F. L. Silicon nitride and related materials. J. Am. Ceram. Soc. 2000, 83 (2), 245-265.
(264) (Yang, J. F.; Ohji, T.; Kanzaki, S.; Díaz, A.; Hampshire, S. Microstructure and mechanical properties of silicon nitride ceramics with controlled porosity. J. Am. Ceram. Soc.2002, 85 (6), 1512-1516.
(265) Zhang, X.; Pan, G.; Li, G.; Qu, J.; Gao, X. Si–Si3N4 composites as anode materials for lithium ion batteries. Electron. Mater. Lett. 2007, 178 (15-18), 1107-1112.
(266) Kim, S. J.; Kim, M. C.; Han, S. B.; Lee, G. H.; Choe, H. S.; Kwak, D. H.; Choi, S. Y.; Son, B. G.; Shin, M. S.; Park, K. W. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 2016, 27, 545-553.
(267) Xiao, Z.; Lei, C.; Yu, C.; Chen, X.; Zhu, Z.; Jiang, H.; Wei, F. Si@ Si3N4@ C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater. 2020, 24, 565-573.
(268) Qu, X.; Zhang, X.; Wu, Y.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J. Power Sources 2019, 443, 227265.
(269) Shi, L.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources 2016, 318, 184-191.
(270) Gu, M.; He, Y.; Zheng, J.; Wang, C. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy 2015, 17, 366-383.
(271) Ischenko, V.; Kienle, L.; Jansen, M. J. Formation and structure of LiSi2N3-AlN solid solutions. J. Mater. Sci. 2002, 37 (24), 5305-5317.
(272) Lapp, T.; Skaarup, S.; Hooper, A. Ionic conductivity of pure and doped Li3N. Solid State Ion. 1983, 11 (2), 97-103.
(273) Li, W.; Wu, G.; Araújo, C. M.; Scheicher, R. H.; Blomqvist, A.; Ahuja, R.; Xiong, Z.; Feng, Y.; Chen, P. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 2010, 3 (10), 1524-1530.
指導教授 李勝偉 張仍奎(Sheng-Wei Lee Jeng-Kuei Chang) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明