博碩士論文 105421060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.226.159.55
姓名 陳奕豪(Yi-Hao Chen)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 以工單排程方式優化契約容量之研究
(Optimize contracted energy capacity by adjusting work order for scheduling fulfillment)
相關論文
★ 探索汽油價格變動對消費者選擇產品之影響 -以某超級市場為例★ 經濟指標與社群媒體情感之關聯性分析
★ 以人體姿態識別ATM提款動作之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化碳過度排放造成地球暖化,造成我們所處的環境岌岌可危,而二氧化碳的排放主要來自於化石燃料的產生,其中大部分為提供發電所用,因此節能省電對我們的環境來說是非常重要的議題。訂定契約容量是電力公司能穩定供給能源與規劃未來新電廠建設的依據,電廠評估至建設時間至少需五至十年,若是能降低契約容量,則可減少電力公司建設新電廠的需求,進而達到減少發電量的產生,並有效降低二氧化碳的排放量。
過去有許多關於契約容量的研究,其中可分為兩個面向,一個為供電端的智慧電網,另一方面則為用電端的研究。供電端過去的研究主要探討電力公司在區域性應施行何種政策才能達到降低契約容量與節能省電的目標,如需量競價等,但是這些政策若沒有大多數大用電量的企業配合,則難以達到降低契約容量的目的。而用電端主要有三種研究,第一種為根據過去的用電資料,分析企業應與電力公司簽訂多少契約容量才能達到最小化電費的效果,此類方法並無法降低契約容量;第二種為降低閒置設備,以增加用電效率,同樣無法達到減少契約容量;第三種則透過視覺化用電情況,使生產者隨時注意是否超過最大需量,並適時延後或提早生產,此方法只要生產者一個閃失,或是臨時需要加速生產大量用電,根據契約容量之規定,則會非常輕易的超約並產生罰款。
因此本研究利用原料與用電相關性高的特性,提出透過交錯生產穩定排程原料的控制並以 DBSCAN 分群法將生產特性相近的品項合併生產,以達到穩定用電的需求,且提供生產者簡易的方式根據排程進行生產,藉此達到實質降低契約容量之效果。最後,將此方法應用至台灣某汽車零組件主要供應商之資料,預估至少節省契約容量1000KW,並預估達到一年減少 5,431 噸二氧化碳排放量。
摘要(英) The global warming caused by excessive carbon dioxide emissions has severely damaged our environment. Carbon dioxide emissions mainly come from the burning of fossil fuels, most of which are used for providing thermal power. Therefore, reducing power generation is vital for environmental sustainability.
To conserve power generation, power companies encourage companies to set up contract capacity to cap the maximum consumption of powers. If companies can reduce contract capacity, the demand for power generation can be reduce and so does carbon dioxide emissions.
The studies of contract capacity can be divided into two aspects. One is the design of smart grid and the other is the reduction of power consumption. The smart grid related research discussed the implementation of the mechanism to share electricity.
The past research on the power consumption can be further divided into three areas. The first is to average the existing power consumption to set up the contract capacity. The second is to fully utilize the contracted capacity by increasing the utilization rate of equipment. The third is to visualize the electricity consumption to help users control the usage of electricity.
However, none of the above mentioned approaches tries to minimize the contracted capacity by averaging the amount of working orders. This study proposes to stabilizes the control of raw materials in the scheduling through staggered production methods, and using the DBSCAN method to combine production items with similar production characteristics to achieve stable electricity demand. Then, it can provide producers with an easy way to produce by schedules. A case study is being conducted on a major automotive component supplier in Taiwan. the result shows that the contract capacity can save 1000 KW per year and reduce 5,431 tons of CO2 emissions as a result.
關鍵字(中) ★ 契約容量
★ 節能省電
★ 規劃排程
★ 用電規劃
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 VIII
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究架構 3
二、 文獻探討 5
2-1 契約容量 5
2-2 過去電力研究 9
三、 研究方法 11
3-1 研究設計 11
3-2 資料分群 12
3-2-1 生產頻率 13
3-2-2 分群演算法 13
3-3 排程規劃 14
3-3-1 最適化排程 14
3-3-2 生產排程規劃 15
四、 個案應用 22
4-1 簡介 22
4-1-1 資料來源 22
4-2 資料分析 23
4-2-1 鐵水重量與用電相關性迴歸分析 23
4-2-2 原始用電線性迴歸分析 24
4-2-3 個案分析 25
4-2-4 資料分群 26
4-3 排程方法 33
4-4 未來訂單規劃 35
五、 結論與未來研究建議 41
5-1 研究結論 41
5-2 研究限制 42
5-2-1 訂單資料設定 42
5-2-2 產能負荷 42
5-3 未來研究建議 43
六、參考文獻 44
七、附錄 49
附錄A 演算法一 49
附錄B 演算法二 50
參考文獻 [1] Boden, T.A., G. Marland, and R.J. Andres. (2010) Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
[2] Yaisawarng, Suthathip & Klein, J Douglass (1994). "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
[3] Ashok, S. (2006). Peak-load management in steel plants. Applied energy, 83(5), 413-424.
[4] Dragoljub Gajic, Hubert Hadera, Luca Onofri, Iiro Harjunkoski, Stefano Di Gennaro (2016). Implementation of an integrated production and electricity optimization system in melt shop. Journal of Cleaner Production.
[5] Sun, Z., Li, L., Bego, A., & Dababneh, F. (2015). Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system. International Journal of Production Economics, 165, 112-119.
[6] Gulnur Maden Olmez, Filiz B. Dilek, Tanju Karanfil, Ulku Yetis, The environmental impacts of iron and steel industry: a life cycle assessment study, Journal of Cleaner Production.
[7] 蓋世汽車資訊:汽車鑄件工藝知識及其鑄造技術發展趨勢。2016年6月24日,取自https://kknews.cc/zh-tw/car/mqb89.html。
[8] 鄭詩楷:我國汽車零組件產業發展趨勢,財團法人車輛研究中心。2016年6月,取自http://www.cier.edu.tw/public/Attachment/65161662771.pdf。
[9] Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.Allport, G. W., & Postman, L. (1946). An analysis of rumor. Public Opinion Quarterly, 10(4), 501-517.
[10] Wardlaw, R., & Sharif, M. (1999). Evaluation of genetic algorithms for optimal reservoir system operation. Journal of water resources planning and management, 125(1), 25-33.
[11] Cai, L. J., Erlich, I., & Stamtsis, G. (2004, October). Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. In Power Systems Conference and Exposition, 2004. IEEE PES (pp. 201-207). IEEE.
[12] Pai, P. F., & Hong, W. C. (2005). Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electric Power Systems Research, 74(3), 417-425.
[13] Nolde, K., & Morari, M. (2010). Electrical load tracking scheduling of a steel plant. Computers & Chemical Engineering, 34(11), 1899-1903.
[14] Chen, Z., Mi, C. C., Xiong, R., Xu, J., & You, C. (2014). Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming. Journal of Power Sources, 248, 416-426.
[15] Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—The new and improved power grid: A survey. IEEE communications surveys & tutorials, 14(4), 944-980.
[16] Wang, B., Li, Y., & Gao, C. (2009). Demand side management outlook under smart grid infrastructure. Automation of Electric Power Systems, 20, 17-22.
[17] Molderink, A., Bakker, V., Bosman, M. G., Hurink, J. L., & Smit, G. J. (2010). Management and control of domestic smart grid technology. IEEE transactions on Smart Grid, 1(2), 109-119
[18] Catalão, J. P. D. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297-1304.
[19] Fan, G. F., Wang, W. S., Liu, C., & DAI, H. Z. (2008). Wind power prediction based on artificial neural network [J]. Proceedings of the CSEE, 34, 118-123.
[20] Gong, Q., Li, Y., & Peng, Z. R. (2007, September). Trip based power management of plug-in hybrid electric vehicle with two-scale dynamic programming. In Vehicle Power and Propulsion Conference, 2007. VPPC 2007. IEEE (pp. 12-19). IEEE.
[21] Gong, Q., Li, Y., & Peng, Z. (2009, June). Power management of plug-in hybrid electric vehicles using neural network based trip modeling. In American Control Conference, 2009. ACC′09. (pp. 4601-4606). IEEE.
[22] Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271.
[23] R. Agrawal and R. Srikant (1994). Fast Algorithms for Mining Association Rules. The Very Large Data Base Conference 20th.
[24] M. Ester, H. Kriegel, J. Sander, X. Xu.(1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD′96), pp. 226-231.
[25] L. Bamber, B.G. Dale, Lean production: a study of application in a traditional manufacturing environment, Production Planning & Control, 2000, VOL. 11, NO. 3, 291± 298
[26] Silver, E.A., Pyke, D.F., Peterson, R., 1998. Inventory Management and Production Planning and Scheduling, 3rd Edition. Wiley, New York.
[27] Kingsman, B., Hendry, L., Mercer, A., de Souza, A., 1996.Responding to customer enquiries in make-to-order companies problems and solutions. International Journal of Production Economics 46–47, 219–231.
[28] E. Boukas, A. Haurie, and F. Soumis, Hierarchical approach to steel production scheduling under a global energy constraint, Annals of operations research, 26 (1990), pp. 289–311.
[29] Zanoni, S., Bettoni, L., & Glock, C. H. (2014). Energy implications in a two-stage production system with controllable production rates.
[30] Zhang, Y., & Tang, L. (2010, March). Production scheduling with power price coordination in steel industry. In Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific (pp. 1-4). IEEE.
[31] Olmez, G. M., Dilek, F. B., Karanfil, T., & Yetis, U. (2016). The environmental impacts of iron and steel industry: a life cycle assessment study. Journal of Cleaner Production, 130, 195-201.
[32] Niyato, D., Xiao, L., & Wang, P. (2011). Machine-to-machine communications for home energy management system in smart grid. IEEE Communications Magazine, 49(4).
[33] Lin, C. C., Peng, H., Grizzle, J. W., & Kang, J. M. (2003). Power management strategy for a parallel hybrid electric truck. IEEE transactions on control systems technology, 11(6), 839-849.
[34] Hadera, H., Harjunkoski, I., Sand, G., Grossmann, I. E., & Engell, S. (2015). Optimization of steel production scheduling with complex time-sensitive electricity cost. Computers & Chemical Engineering, 76, 117-136.
[35] Farhangi, H. (2010). The path of the smart grid. IEEE power and energy magazine, 8(1).
[36] Alain Hait, Christian Artigues. (2011) An hybrid CP/MILP method for scheduling with energy costs. European Journal of Industrial Engineering, Inderscience, 5 (4), pp.471-489.
[37] 楊勝翔,「需量預測應用於最佳契約容量研究」,國立成功大學,電機工程學系碩士論文,民國102年。
[38] 黃登意,「電力負載最佳契約容量之研究」,國立台北科技大學,電機工程系碩士在職專班論文,民國98年。
[39] 台灣電力股份有限公司:台灣電力公司營業規則,取自https://www.taipower.com.tw/tc/page.aspx?mid=159。
[40] 台灣電力股份有限公司:降低用電的好方法,2013年,取自https://www.taipower.com.tw/upload/147/2017111320272937836.pdf。
[41] 台灣電力股份有限公司:奉准調整本公司各類用電電價如公告事項,自2017年4月1日0時起調整,2017年3月27日,取自https://www.taipower.com.tw/upload/29/2018032719495918817.pdf。
[42] 經濟部能源局:台塑一貫化作業煉鋼廠環境影響說明書,頁8-9。2008年,取自 https://www.moeaboe.gov.tw。
指導教授 許秉瑜 沈國基 審核日期 2018-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明