參考文獻 |
參考文獻
[參考網站]
[1] Android A to Z: What is Dalvik. (Accessed:28-Jun-2018) from https://www.androidcentral.com/android-z-what-dalvik
[2] Android Developers. (Accessed:28-Jun-2018) from https://developer.android.com/guide/platform/
[3] Apktool A tool for reverse engineering 3rd party, closed, binary Android apps. (Ac-cessed:28-Jun-2018) from https://ibotpeaches.github.io/Apktool/
[4] Contagio Mini Dump Blog. (Accessed:28-Jun-2018) from http://contagiominidump.blogspot.tw/
[5] Dalvik opcodes. (Accessed:28-Jun-2018) from http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
[6] Difference between control flow and data flow. (Accessed:28-Jun-2018) from https://social.msdn.microsoft.com/Forums/sqlserver/en-US/0c06b2d5-97f8-4537-aaf1-47e8b8994152/difference-between-control-flow-and-data-flow?forum=sqlintegrationservices
[7] Euclidean vs. Cosine Distance. (Accessed:28-Jun-2018) from https://cmry.github.io/notes/euclidean-v-cosine
[8] McAfee(2018) “McAfee Mobile Threat Report Q1, 2018.” (Accessed:28-Jun-2018) from https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2018.pdf
[9] Simple guide to confusion matrix terminology. (Accessed:28-Jun-2018) from https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
[10] Soot - A framework for analyzing and transforming Java and Android applications. (Accessed:28-Jun-2018) from https://sable.github.io/soot/
[11] Statcounter(2018) “Mobile Operating System Market Share Worldwide.” (Ac-cessed:28-Jun-2018) from http://gs.statcounter.com/os-market-share/mobile/worldwide
[12] SuSi–Sources and Sinks|Secure Software Engineering. (Accessed:28-Jun-2018) from https://blogs.uni-paderborn.de/sse/tools/susi/
[13] What is a n-gram?. (Accessed:28-Jun-2018) from https://www.quora.com/What-is-a-n-gram
[14] What is metadata ? And what is the use of it in android. (Accessed:28-Jun-2018) from https://stackoverflow.com/questions/38687159/what-is-metadata-and-what-is-the-use-of-it-in-android
[15] Windows Defender Security Intelligence Naming malware. (Accessed:28-Jun-2018) from https://www.microsoft.com/en-us/wdsi/help/malware-naming
[16] Z-Score: Definition, Formula and Calculation. (Accessed:28-Jun-2018) from http://www.statisticshowto.com/probability-and-statistics/z-score/
[中文文獻]
[17] 胡哲君. “去可識別個人資訊後之Android惡意程式動態分析研究” 國立中央大學資訊管理所碩士論文 (2017)
[18] 游子慧. “基於靜態特徵與機器學習之Android惡意程式分類研究” 國立中央大學資訊管理所碩士論文 (2017)
[19] 陳太皇. “文件分類特徵選擇方法研究” 龍華科技大學資訊管理碩士論文 (2012)
[20] 許珈榮、林盈達、蔡濠全、李佳穎. “Android 惡意程式收集, 分析與評估” 國立交通大學資訊工程系碩士論文 (2012)
[21] 楊豐盛著,《Android技術內幕:探索Android核心原理與系統開發》(碁峰資訊,2011年)
[英文文獻]
[22] Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A., & Fu, H. (2018, January). DDefender: Android application threat detection using static and dynamic analysis. In Consumer Electronics (ICCE), 2018 IEEE International Conference on (pp. 1-6). IEEE.
[23] Aresu, M., Ariu, D., Ahmadi, M., Maiorca, D., & Giacinto, G. (2015, October). Clus-tering android malware families by http traffic. In Malicious and Unwanted Software (MALWARE), 2015 10th International Conference on (pp. 128-135). IEEE.
[24] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February). DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. In Ndss (Vol. 14, pp. 23-26).
[25] Arzt, S., Rasthofer, S., & Bodden, E. (2017, May). The soot-based toolchain for ana-lyzing Android apps. In Proceedings of the 4th International Conference on Mobile Software Engineering and Systems (pp. 13-24). IEEE Press.
[26] Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, Au-gust). Effectiveness of opcode ngrams for detection of multi family android malware. In Availability, Reliability and Security (ARES), 2015 10th International Conference on (pp. 333-340). IEEE.
[27] Cesare, S., Xiang, Y., & Zhou, W. (2014). Control Flow-Based Malware VariantDetec-tion. IEEE Trans. Dependable Sec. Comput., 11(4), 307-317.
[28] Dhaya, R., & Poongodi, M. (2014, May). Detecting software vulnerabilities in android using static analysis. In Advanced Communication Control and Computing Technolo-gies (ICACCCT), 2014 International Conference on (pp. 915-918). IEEE.
[29] Jerome, Q., Allix, K., State, R., & Engel, T. (2014, June). Using opcode-sequences to detect malicious Android applications. In Communications (ICC), 2014 IEEE Interna-tional Conference on(pp. 914-919). IEEE.
[30] Kang, B., Yerima, S. Y., McLaughlin, K., & Sezer, S. (2016, June). N-opcode analysis for android malware classification and categorization. In Cyber Security And Protec-tion Of Digital Services (Cyber Security), 2016 International Conference On(pp. 1-7). IEEE.
[31] Karimi, A., & Moattar, M. H. (2017, October). Android ransomware detection using reduced opcode sequence and image similarity. In Computer and Knowledge Engi-neering (ICCKE), 2017 7th International Conference on (pp. 229-234). IEEE.
[32] Kochhar, P. S., Lo, D., Lawall, J., & Nagappan, N. (2017). Code coverage and postre-lease defects: A large-scale study on open source projects. IEEE Transactions on Reli-ability, 66(4), 1213-1228.
[33] Lai, F., Hasan, S. S., Laugesen, A., & Chipara, O. (2014, April). Csense: A stream-processing toolkit for robust and high-rate mobile sensing applications. In Proceedings of the 13th international symposium on Information processing in sen-sor networks (pp. 119-130). IEEE Press.
[34] Ma, S., Tang, Z., Xiao, Q., Liu, J., Duong, T. T., Lin, X., & Zhu, H. (2013, December). Detecting GPS information leakage in Android applications. In Global Communica-tions Conference (GLOBECOM), 2013 IEEE (pp. 826-831). IEEE.
[35] Martin, A., Calleja, A., Menendez, H. D., Tapiador, J., & Camacho, D. (2016, Decem-ber). ADROIT: Android malware detection using meta-information. In Computational Intelligence (SSCI), 2016 IEEE Symposium Series on (pp. 1-8). IEEE.
[36] McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., ... & Joon Ahn, G. (2017, March). Deep android malware detection. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy(pp. 301-308). ACM.
[37] Michael, S., Florian, E., Thomas, S., Felix, C. F., & Hoffmann, J. Mobilesandbox: Looking deeper into android applications. In Proceedings of the 28th International ACM Symposium on Applied Computing (SAC).
[38] Narayanan, A., Yang, L., Chen, L., & Jinliang, L. (2016, July). Adaptive and scalable android malware detection through online learning. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 2484-2491). IEEE.
[39] Pang, Y., Chen, Z., Li, X., Wang, S., Zhao, C., Wang, L., ... & Li, Z. (2017, July). Finding Android Malware Trace from Highly Imbalanced Network Traffic. In Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference on (Vol. 1, pp. 588-595). IEEE.
[40] Pitolli, G., Aniello, L., Laurenza, G., Querzoni, L., & Baldoni, R. (2017, October). Malware family identification with BIRCH clustering. In Security Technology (ICCST), 2017 International Carnahan Conference on (pp. 1-6). IEEE.
[41] Qi, H., & Gani, A. (2012, May). Research on mobile cloud computing: Review, trend and perspectives. In Digital Information and Communication Technology and it′s Ap-plications (DICTAP), 2012 Second International Conference on (pp. 195-202). ieee.
[42] Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S. Y., & Ziarek, L. (2017, June). Android malware detection using complex-flows. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on (pp. 2430-2437). IEEE.
[43] Sinha, L., Bhandari, S., Faruki, P., Gaur, M. S., Laxmi, V., & Conti, M. (2016, January). Flowmine: Android app analysis via data flow. In Consumer Communications & Net-working Conference (CCNC), 2016 13th IEEE Annual (pp. 435-441). IEEE.
[44] Stieber, H. A., Hu, L., & Wong, W. E. (2017, October). Estimation of the Total Number of Software Failures from Test Data and Code Coverage: A Bayesian Approach. In Software Reliability Engineering Workshops (ISSREW), 2017 IEEE International Symposium on (pp. 234-238). IEEE.
[45] Wang, S., Chen, Z., Zhang, L., Yan, Q., Yang, B., Peng, L., & Jia, Z. (2016, June). TrafficAV: An effective and explainable detection of mobile malware behavior using network traffic. In Quality of Service (IWQoS), 2016 IEEE/ACM 24th International Symposium on (pp. 1-6). IEEE.
[46] Xu, K., Li, Y., & Deng, R. H. (2016). ICCDetector: ICC-based malware detection on Android. IEEE Transactions on Information Forensics and Security, 11(6), 1252-1264.
[47] Yusof, M., Saudi, M. M., & Ridzuan, F. (2017, September). A new mobile botnet clas-sification based on permission and API calls. In Emerging Security Technologies (EST), 2017 Seventh International Conference on (pp. 122-127). IEEE.
[48] Zeng, H., Ren, Y., Wang, Q. X., He, N. Q., & Ding, X. Y. (2014, December). Detecting malware and evaluating risk of app using Android permission-API system. In Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2014 11th In-ternational Computer Conference on (pp. 440-443). IEEE.
[49] Zhong, J., Huang, J., & Liang, B. (2012, August). Android permission re-delegation detection and test case generation. In Computer Science & Service System (CSSS), 2012 International Conference on (pp. 871-874). IEEE.
[50] Zhou, H., Zhang, W., Wei, F., & Chen, Y. (2017, June). Analysis of Android malware family characteristic based on isomorphism of sensitive API call graph. In 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC) (pp. 319-327). IEEE. |