博碩士論文 105426009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.82.10.219
姓名 高士鈞(Shih-Chun Kao)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 建立非對稱市場潛力及非對稱自身價格函數之替代品重新探討RCM和CC環境
(Re-investigating RCM and Category Captainship for Substitute Products under Non-Symmetric Market Potential and Non-Symmetric Own-Price Sensitivity)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 品類指的是在市面上被認為可以互相取代的商品種類或是服務,故如何做好品類管理是個很重要的議題。在傳統上,零售商通常都是關注於品牌的管理,認為品牌才是吸引消費者的重要元素,隨著販賣的商品推陳出新,在貨架空間漸漸的供不應求後,如何有效率的使用有限的貨架空間是個很重要的議題。便有學者提出Category Captainship (CC)的品類管理,此種的品類管理就是著重於category captain可以自行在有限的貨架空間下訂定此配銷通路裡的商品價格。故我們的研究在探討在有限的貨架空間下在使用傳統的零售品類管理(Retail Category Management)或使用品類統帥(Category Captainship)下對於零售商及兩個製造商的商品銷售數量的影響以及價格決策,進而討論零售商、Category Captain和Non-captain製造商應該要選擇何種品類管理較有利。
本研究沿用Singh and Vives (1984)所提出的效用函數推導出非對稱的市場潛力及非對稱自身價格函數的需求函數,並採用Kurtulus and Toktay (2011)的作法,使用無差異曲線來探討零售商、Category Captain和Non-captain製造商在兩個商品有不同的市場潛力和自身價格函數的條件下應該要選擇RCM還是CC品類管理才較有利,並且給予一些管理上的建議。
摘要(英) The category is the types of goods or services that are considered to be substitutable or complementary in the market. Therefore, how to manage the category is an important issue. Traditionally, retailers usually focus on the management of the brand, thinking that the brand is the most important element to attract consumers. With the new product increase quickly, how to efficiently use the limited shelf space after the shelf space is gradually in short supply, it is be very concerned about. Then some scholars have proposed a category management called as category captainship (CC) which is focused on the category captain’s ability to set the price of goods in the distribution channel under the limited shelf space. Therefore, our research explores the effect of using traditional retail category management or CC under the limited shelf space on retailer and two manufacturers’ pricing decision and quantities of products, and then discuss the retailer, category captain and non-captain manufacturers should choose whether RCM or CC.
In this study, we derived the non-symmetric demand function from the utility function in Singh and Vives (1984) and use the method of Kurtulus and Toktay (2011) to use indifference curves to explore retailer, category captain and non-captain manufacturers should choose which category management is more favorable.
關鍵字(中) ★ 品類管理
★ 品類統帥
★ 非對稱市場潛力
★ 對稱互補性
★ 非對稱自身價 格函數
★ 定價及貨架空間決策
關鍵字(英) ★ Category Captainship
★ RCM
★ category management
★ non-Symmetric Own-Price Sensitivity
★ non-Symmetric Market Potential
論文目次 Contents
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Research objectives 7
1.3 Research methodology 8
Chapter 2 Literature Review 10
2.1 Researches for the utility function and demand function 10
2.2 Researches for the shelf space 11
2.3 Researches for Retailer Category Management and Category Captainship scenario 12
Chapter 3 The model of non-symmetric demand function 15
3.1 The model under non-symmetric demand function in RCM scenario 16
3.2 The model under non-symmetric demand function in category captainship scenario 19
Chapter 4 Analysis of Substitute Products 22
4.1 RCM scenario 22
4.2 CC scenario 27
4.3 The impact of CC scenario 31
4.4 Numerical analysis 35
Chapter 5 Conclusions 56
5.1 Conclusions and contributions 56
5.2 Future researches 57
Reference 58
Appendix A 60
Appendix B.1 61
Appendix B.2 (Wholesale Price Game in RCM) 64
Appendix B.3. Proof of Proposition 1 69
Appendix C.1 72
Appendix C.2 (Second Manufacturer’s Wholesale Price in CC) 75
Appendix C.3. Proof of Proposition 2 79
Appendix D. 82
Appendix E. The auxiliary expressions for the equations shown in the Propositions 91

List of Figures
Figure 3-1 Background of the model 15
Figure 4-1 A representation of relative profits and consumer surplus 34
Figure 4-2 Indifference curve for k=0.0,a/b=0.4 36
Figure 4-3 Indifference curve for k=0.0,a/b=0.8 37
Figure 4-4 Indifference curve for k=0.0,a/b=1.0 38
Figure 4-5 Indifference curve for k=0.0,a/b=1.6 39
Figure 4-6 Indifference curve for k=0.3,a/b=0.4 40
Figure 4-7 Indifference curve for k=0.3,a/b=0.8 41
Figure 4-8 Indifference curve for k=0.3,a/b=1.0 41
Figure 4-9 Indifference curve for k=0.3,a/b=1.2 42
Figure 4-10 Indifference curve for k=0.3,a/b=1.6 43
Figure 4-11 Indifference curve for k=0.6,a/b=0.4 44
Figure 4-12 Indifference curve for k=0.6,a/b=0.8 45
Figure 4-13 Indifference curve for k=0.6,a/b=1.0 45
Figure 4-14 Indifference curve for k=0.6,a/b=1.2 46
Figure 4-15 Indifference curve for k=0.6,a/b=1.6 47
Figure 4-16 Indifference Curves for the Retailer with different a/b 48
Figure 4-17 Indifference Curves for the retailer with different δ2 50
Figure 4-18 All case under indifference curves for k=0.3, δ1=0.5 53
Figure 4-19 All case under indifference curves for k=0.3, δ1=0.5 54
Figure 4-20 All case under indifference curves for k=0.3, a=0.5 55

List of Tables
Table 4-1 The numerical results for various a/b under RCM scenario (with δ1=0.5, δ2=0.5 ,θ=0.8, k=0.3 ,a=5,c=1). 24
Table 4-2 The numerical results for various k under RCM scenario (with δ1=0.5, δ2=0.5 ,θ=0.8 ,a=5, b=5 c=1). 24
Table 4-3 The numerical results for various θ under RCM scenario (with δ1=0.5, δ2=0.5 , k=0.3 ,a=5, b=5 c=1). 25
Table 4-4 The numerical results for various δ1/δ2 under RCM scenario (with δ1=0.5, k=0.3, a=5, b=5 , c=1 and θ=0.8). 26
Table 4-5 The numerical results for various a/b under CC scenario (with δ1=0.5, δ2=0.5 ,θ=0.8, k=0.3 ,a=5,c=1, ?=0.8) 28
Table 4-6 The numerical results for various k under CC scenario (with δ1=0.5, δ2=0.5 ,θ=0.8 ,a=5, b=5 c=1, ?=0.8). 29
Table 4-7 The numerical results for various θ under CC scenario (with δ1=0.5, δ2=0.5 , k=0.3 ,a=5, b=5 c=1, ?=0.8). 29
Table 4-8 The numerical results for various δ1/δ2 under CC scenario (withδ1=0.5, k=0.3, a=5, b=5 c=1 and θ=0.8, ?=0.8). 30
Table 4-9 All cases under each condition. 53
參考文獻 [1] Abbott, H., & Palekar, U. S. Retail replenishment models with display-space elastic demand. European Journal of Operational Research, 186(2), 586-607, 2008.
[2] Amir, R., & Jin, J. Y. Cournot and Bertrand equilibria compared: substitutability, complementarity and concavity. International Journal of Industrial Organization, 19(3-4), 303-317, 2001.
[3] Bultez, A., & Naert, P. SH. ARP: Shelf allocation for retailers′ profit. Marketing science, 7(3), 211-231, 1988.
[4] Choi, S. C. Price competition in a channel structure with a common retailer. Marketing Science, 10(4), 271-296, 1991.
[5] Corstjens, M., & Doyle, P. A model for optimizing retail space allocations. Management Science, 27(7), 822-833, 1981.
[6] Hubner, A. H., & Kuhn, H. Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management. Omega, 40(2), 199-209, 2012.
[7] Kurtulus, M., & Toktay, B. Category captainship: Outsourcing retail category management. Social Science Electronic Publishing, Inc, 23, 2005.
[8] Kurtulu?, M., & Toktay, L. B. Category captainship vs. retailer category management under limited retail shelf space. Production and Operations Management, 20(1), 47-56, 2011.
[9] Martin?Herran, G., Taboubi, S., & Zaccour, G. The Impact of Manufacturers′ Wholesale Prices on a Retailer′s Shelf?Space and Pricing Decisions. Decision Sciences, 37(1), 71-90, 2006.
[10] Misra, K., Nijs, V., & Hansen, K. Selecting a category captain: The impact on manufacturers, retailers, and consumers (Doctoral dissertation, School of Management, University of California, San Diego), 2009.
[11] McGuire, T. W., & Staelin, R. An industry equilibrium analysis of downstream vertical integration. Marketing science, 2(2), 161-191, 1983.
[12] Quelch, J. A., & Kenny, D. Extend profits, not product lines. Make Sure All Your Products Are Profitable, 14, 1994.
[13] Singh, N., & Vives, X. Price and quantity competition in a differentiated duopoly. The RAND Journal of Economics, 546-554, 1984.
[14] Vives, X. On the efficiency of Bertrand and Cournot equilibria with product differentation. Journal of Economic Theory, 36(1), 166-175, 1985.
[15] Wang, S. Y., Sheen, G. J., & Yeh, Y. Pricing and shelf space decisions with non-symmetric market demand. International Journal of Production Economics, 169, 233-239, 2015.
[16] Wang, Y., Raju, J. S., & Dhar, S. K. The choice and consequences of using a category captain for category management. Office of Research, Singapore Management University, 2003.
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明