博碩士論文 105521019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:13.59.72.129
姓名 林瑋峻(Wei-Chun Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 雙閘極氮化鋁鎵/氮化鎵高電子遷移率電晶體之第二閘極佈局與元件特性研究
(The Electrical Characteristics of AlGaN/GaN HEMTs with Different Configuration of Second Gate)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文為探討雙閘極氮化鋁鎵/氮化鎵 (AlGaN/GaN) 高電子遷移率電晶體之第二閘極佈局與元件電性研究,首先透過Silvaco TCAD進行元件模擬與基本電性觀察,實驗研究分為兩個部分,(1) 雙閘極結構元件;(2) 維持歐姆接觸尺寸,利用第二閘極長度改變通道寬度元件。實驗結果分別量測不同結構元件的直流電性、高頻特性與不同環境溫度條件下的特性,並與單閘極結構比較,觀察第二閘極佈局對於電晶體電性影響。
雙閘極結構元件,在閘極與第二閘極同時施予小於臨界電壓的偏壓時,閘極下方空乏區範圍較大,可以改善電晶體關閉時漏電流 (ID,off) 並使臨界電壓 (Vth) 向正電壓位移。此外,第二閘極施予0 V偏壓,可以使汲極在大偏壓條件下,閘極與汲極之間電場分布均勻,進而改善元件關閉時的崩潰電壓電性。變溫量測包含汲極電流 – 閘極電壓電性與汲極電流 – 汲極電壓電性,分別計算臨界電壓、最大轉導峰值、導通電流值、漏電流值、導通電阻值對應溫度係數。並藉由汲極電流 – 汲極電壓電性觀察各元件熱阻抗,熱阻抗分為低功率範圍與高功率範圍,而不論低、高功率範圍,雙閘極結構,且第二閘極為懸浮態元件都具有較佳的熱阻抗值,因此第二閘極有助於元件散熱。
延續雙閘極結構,維持歐姆接觸尺寸,利用第二閘極長度改變通道寬度元件。通道寬度設計與第二閘極長度呈現消長關係,通道寬度分別等於四分之三源極寬度、四分之二源極寬度和四分之一源極寬度,且第二閘極下方並無通道存在。此部分分為閘極與第二閘極連結元件和閘極與第二閘極未連結元件,不論閘極與第二閘極是否連結的元件,隨著通道寬度縮減,最大轉導峰值與導通電流密度呈現上升趨勢,次臨界擺幅與導通電阻則有改善,但漏電流密度也呈現上升趨勢,量測結果與Silvaco TCAD 3D結構模擬電性結果趨勢吻合。由於第二閘極佈局,使閘極總長度增加,高頻量測所得電流增益截止頻率與功率增益截止頻率都隨著通道寬度縮減而呈現劣化趨勢。元件變溫量測包含汲極電流 – 閘極電壓電性與汲極電流 – 汲極電壓電性,分別計算臨界電壓、最大轉導峰值、導通電流值、漏電流值、導通電阻值對應溫度係數,並藉由汲極電流 – 汲極電壓電性觀察各元件熱阻抗。熱阻抗分為低功率範圍與高功率範圍,而不論低、高功率範圍,隨著通道寬度縮減,熱阻抗值呈現下降趨勢,因此改變通道寬度有助於元件散熱。保持歐姆接觸寬度,改變閘極 - 汲極間通道寬度,並調變第二閘極長度結構元件,具有降低次臨界擺幅、導通電阻電性與熱阻抗等優點。
摘要(英) The electrical characteristics of AlGaN/GaN high-electron mobility transistors with the different layouts of the second gate are designed and investigated. First, Silvaco TCAD is used to simulate and investigate the electrical characteristics. The experimental study of devices include two parts, (1) device performance with dual gates structure; (2) device performance with the same size of the ohmic contact but varying the second gate length to adjust the 2DEG channel width. DC and high frequency measurements of different structural devices under the different temperatures conditions are measured and analyzed. In the first part, device with dual gates provide the larger depletion region under the gate metal, which can improve the leakage current ID, off and result in Vth shift. In addition, applying a bias voltage of 0 V to the second gate can make the electric field become uniform between gate and drain. Moreover, the temperature coefficients of the Vth, gm, max, ID, ID, off, and Ron at different temperatures conditions are performed and calculated. The values of thermal impedance are divided into low power range and high power range. Regardless of low and high power range, dual gates structure with floating second gate shows better thermal impedance. So the second gate structure could contribute to thermal dissipation.
In the second part, devices with the same ohmic contact size (Wsource) but using the second gate length to adjust the 2DEG channel width is designed and characterized. The 2DEG channel width is designed to 3/4 Wsource, 1/2 Wsource and 1/4 Wsource. There are two structures: (Ⅰ) gate and second gate are connected, (Ⅱ) second gate is floating. With the reduction of the 2DEG channel width, the gm, max and ID show an increase trend. The leakage current also shows an increase trend. But the S.S and Ron are improved. The measurement results agree well with the simulation results of Silvaco TCAD DC characteristics. The thermal impedance decreases as the channel width is reduced. Therefore, changing the width of the channel could contribute to thermal dissipation of the device.
關鍵字(中) ★ 氮化鋁鎵
★ 氮化鎵
★ 高電子遷移率電晶體
★ 雙閘極
★ 導通電阻
關鍵字(英) ★ AlGaN
★ GaN
★ HEMTs
★ Dual Gates
★ on-state resistance
論文目次 摘要..................................................V
Abstract.............................................Ⅶ
致謝..................................................Ⅷ
表目錄................................................?
圖目錄...............................................XIII
第一章 緒論............................................1
1.1 前言..............................................1
1.2 氮化鋁鎵/氮化鎵場效電晶體導通電阻特性相關研究.........4
1.3 本論文研究動機與目的................................13
1.4 論文架構...........................................13
第二章 氮化鋁鎵/氮化鎵高電子遷移率電晶體磊晶與佈局.........15
2.1 前言...............................................15
2.2 元件磊晶介紹........................................15
2.2.1 磊晶設計.........................................15
2.2.2 磊晶特性分析.....................................18
2.3 元件製程與佈局設計..................................19
2.3.1 高臺製程與氬離子佈植製程元件隔離之電性比較..........19
2.3.2 元件佈局設計.....................................26
2.4 結論...............................................30
第三章 雙閘極氮化鋁鎵/氮化鎵高電子遷移率電晶體電性量測與分析31
3.1 前言...............................................31
3.2 直流電流 – 電壓及崩潰特性............................34
3.2.1 元件特性模擬.....................................34
3.2.2 元件直流電性分析.................................37
3.2.3 閘極漏電流暨表面漏電流分析........................46
3.3 高頻特性............................................47
3.4 變溫量測分析........................................53
3.5 結論...............................................62
第四章 不同通道寬度之氮化鋁鎵/氮化鎵高電子遷移率電晶體......64
4.1 前言...............................................64
4.2 直流電流 – 電壓及崩潰特性............................65
4.2.1 元件電性模擬.....................................65
4.2.2 閘極與第二閘極連結元件電性........................70
4.2.3 閘極未與第二閘極連結元件電性......................75
4.3 高頻特性............................................81
4.3.1 閘極與第二閘極連結元件電性........................81
4.3.2 閘極未與第二閘極連結元件電性......................86
4.4 變溫量測分析........................................91
4.4.1 閘極與第二閘極連結元件之熱阻抗.....................91
4.4.2 閘極未與第二閘極連結元件之熱阻抗...................99
4.5結論...............................................108
第五章 結論與未來展望...................................109
參考文獻...............................................111
附錄Ⅰ 元件製程流程......................................116
附錄Ⅱ 高臺製程元件電性.................................124
參考文獻 [1] U. K. Mishra, L. Shen, and T. E. Kazior, “GaN Power Devices for Power Devices and Amplifiers,” IEEE Proceedings, no. 2, pp.287-305, February 2008.
[2] N. Kaminski, and O. Hilt, “SiC and GaN devices – wide bandgap is not all the same,” IET Circuits Devices Syst, vol. 8, no. 3, pp. 227–236, May 2014.
[3] Bo Song, Mingda Zhu, Zongyang Hu, Meng Qi, Kazuki Nomoto, Xiaodong Yan, Yu Cao, Debdeep Jena, and Huili Grace Xing, “Ultralow-Leakage AlGaN/GaN High Electron Mobility Transistors on Si With Non-Alloyed Regrown Ohmic Contacts,” IEEE Electron Device Letter, vol. 37, no. 1, pp. 16-19, January 2016.
[4] Hyung-Seok Lee, Dong Seup Lee, and Tomas Palacios, “AlGaN/GaN High-Electron-Mobility Transistors Fabricated Through a Au-Free Technology,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 623-625, May 2011.
[5] M. J. Anand, G. I. Ng, S. Arulkumaran, H. Wang, Y. Li, S. Vicknesh and T. Egawa, “Low Specific ON-resistance and High Figure-of-Merit AlGaN/GaN HEMTs on Si substrate with Non-Gold Metal Stacks, ” 71st Device Research Conference, pp. 1-2, 2013.
[6] Marleen Van Hove, Sanae Boulay, Sandeep R. Bahl, Steve Stoffels, Xuanwu Kang, Dirk Wellekens, Karen Geens, Annelies Delabie, and Stefaan Decoutere, “CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 667-669, May 2012.
[7] Masaki Inada, Shuichi Yagi, Yuki Yamamoto, Guanxi Piao, Mitsuaki Shimizu, Hajime Okumura and Kazuo Arai, “Low Specific On-Resistance AlGaN/GaN HEMT on Sapphire Substrate,” 18th International Symposium on Power Semiconductor Devices & IC′s, pp. 1-4, June 2006.
[8] Jin Wei, Jiacheng Lei, Xi Tang, Baikui Li, Shenghou Liu, and Kevin J. Chen, “Channel-to-Channel Coupling in Normally-Off GaN Double-Channel MOS-HEMT,” IEEE Electron Device Letters, vol. 39, no. 1, pp. 59-62, 2018.
[9] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[10] D. Balaz, “Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors,” University of Glasgow, 2010.
[11] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560–566, Mar. 2001
[12] Shojiro Asai, Fumio Murai, and Hiroshi Kodera, “GaAs Dual-Gate Schottky-Barrier FET’s for Microwave Frequencies,” IEEE Transactions on Electron Devices, vol 22, no 10, pp. 897-904, October 1975.
[13] W.-S. Lour, M.-K. Tsai, K.-c. Chen, Y.-W. Wu, S.-W. Tan and Y.-J. Yang, “High-linearity and variable gate-voltage swing dual-gate In0.5Ga0.5P/In0.2Ga0.8As pseudomorphic high electron mobility transistors,” COMMAD 2000 Proceedings, pp. 226-229, June 2000.
[14] Elizabeth Glass, Michael Shields, Adolfo Reyes, “HIGH PERFORMANCE SINGLE SUPPLY POWER AMPLIFIERS FOR GSM AND DCS APPLICATIONS USING TRUE ENHANCEMENT MODE PET TECHNOLOGY,” Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 447-450, 2002.
[15] Warren Abey, Toshiaki Moriuchi, Rached Hajji, Tomohiro Nakamura, Yasunori Nonaka, Eizo Mitani, Wayne Kennan, Hao Dang, “A Single Supply High Performance PA MMIC for GSM Handsets using Quasi-Enhancement Mode PHEMT,” MTT-S International Microwave Sympsoium Digest Conference, vol 2, pp. 923-926, 2001.
[16] Rajkumar Santhakumar, Brian Thibeault, Masataka Higashiwaki, Stacia Keller, Zhen Chen, Umesh K. Mishra, and Robert A. York, “Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs,” IEEE Transactions ON Microwave Theory AND Techniques, vol. 59, no. 8, pp. 2059-2063, August 2011
[17] J. S. Moon, R. Grabar, D. Brown, I. Alvarado-Rodriguez, D. Wong, A. Schmitz, H. Fung, P. Chen, J.-C. Kang, S. Kim, T. Oh, and C. Mcguire, “>70% Power-Added-Efficiency Dual-Gate, Cascode GaN HEMTs Without Harmonic Tuning,” IEEE Electron Device Letters, vol. 37, no. 3, pp. 272-275, March 2016.
[18] Bin Lu, Omair Irfan Saadat, and Tomas Palacios, “High-Performance Integrated Dual-Gate AlGaN/GaN Enhancement-Mode Transistor,” IEEE Electron Device Letters, vol. 31, no. 9, pp. 990-992, September 2010.
[19] J. Kotani ea al., “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Applied Physics Letters., vol. 91, no. 9, pp. 093501-1–093501-3, Aug. 2007.
[20] L. Lee, W. Long, S. Strahle, D. Geiger, B. Henle, H. Kunzel, E. Mittermeier, U. Erben, U. Spitzberg and E. Kohn, “Dual-gate HFET with closely spaced electrodes on InP,” Proceedings of IEEE Cornell Conference, pp. 522-531, 1995.
[21] P. J. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs,” IEEE Electron Device Lett, vol. 10, pp. 291-293, July 1989.
[22] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Eletron Device Letters, vol. 19, no. 3, pp. 89-91, March 1998.
[23] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda and I. Omura, ”Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356?362, Feb. 2006.
[24] N. Kaneko, O. Machida, M. Yanagihara, S. Iwakami, R. Baba, H. Goto and A. Iwabuchi, ”Normally-off AlGaN/GaN HFET using NiOx Gate with recess,” Proc. Int. Symp. Power Smicond. Devices and ICs, pp. 25?28, Jun. 2009.
[25] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, ”A normally-off AlGaN/GaN transistor with RonA=2.6mΩcm2 and BVds=640V using conductivity modulation,” in IEDM Tech, pp. 907?910, Dec. 2006.
[26] W. Huang, T. P. Chow, Y. Niiyama, T. Nomura and S. Yoshida, ”Lateral implanted RESURF GaN MOSFETs with BV up to 2.5 kV,” Proc. Int. Symp. Power Smicond. Devices and ICs, pp. 291?294, May 2008.
[27] W. Huang, T. P. Chow, Y. Niiyama, T. Nomura and S. Yoshida, ”730V, 34mΩ-cm2 lateral epilayer RESURF GaN MOSFET,” Proc. Int. Symp. Power Smicond. Devices and ICs, pp. 29?32, Jun. 2009.
[28] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, “A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,” in IEDM Tech, Baltimore, MD, USA, pp. 153-156, Dec. 2009.
[29] Kyu-Heon Cho, In-Hwan Ji, Young-Hwan Choi, Jiyong Lim, Young-Shil Kim, Kye-Ryung Kim, and Min-Koo Han, “High Breakdown Voltage AlGaN/GaN HEMTs by Employing Proton Implantation,” 20th International Symposium on Power Semiconductor Devices & IC′s, pp.18-22, 2008.
[30] Sadahiro Kato, Yoshihiro Satoh, Hitoshi Sasaki, Iwami Masayuki, Seikoh Yoshida, “C-doped GaN buffer layers with high breakdown voltages for high power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE,” Journal of Crystal Growth, pp.831-834, 2007.
[31] Young Chul Choi, Milan Pophristic, Ho-Young Cha,Boris Peres, Michael G. Spencer, and Lester F. Eastman, “The Effect of an Fe-doped GaN Buffer on OFF-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate,” IEEE Transactions on Electron Devices, vol 53, no. 12, pp. 2926-2931, December 2006.
[32] Y. C. Choi, M. Pophristic, M. G. Spencer, and L. F. Eastman, “High Breakdown Voltage and Low Specific On-resistance C-doped GaN-on-sapphire HFETs for Low-loss and High-power Switching Applications,” IEEE Applied Power Electronics Conference and Exposition, pp. 1264-1267, 2007.
[33] Maojun Wang and Kevin J. Chen, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol 58, no. 2, pp. 460-465, February 2011.
[34] Frank Brunner, Eldad Bahat-Treidel, Melanie Cho, Carsten Netzel, Oliver Hilt, Joachim Wurfl, and Markus Weyers, “Comparative study of buffer designs for high breakdown voltage AlGaNGaN HFETs,” Phys. Status Solidi C, no. 7-8, pp. 2427-2429, 2011.
[35] Hai-Jun Guo, Bao-Xing Duan, Song Yuan, “A novel AIGaN/GaN high electron mobility transistors with the partial fixed positive charge in buffer layer,” 13th IEEE ICSICT, pp. 1221-1223, 2016.
[36] Bruce M. Green, Kenneth K. Chu, E. Martin Chumbes, Joseph A. Smart, James R. Shealy, and Lester F. Eastman, “The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Letters, vol. 21, no. 6, pp. 268-270, June 2000.
[37] Chu Futong, Chen Chao, and Liu Xingzhao, and J. S. Speck, “Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation,” Journal of Semiconductors, vol. 35, no. 3, March 2014.
[38] MinHan Mi, Meng Zhang, YunLong He, XiaoHua Ma and Yue Hao, “The Improvement of Breakdown Voltage in AlGaN/GaN HEMT by Using High-k Dielectric La2O3 Passivation,” 13th SSLChina: IFWS, pp. 113-115, 2016.
[39] Jiyong Lim, Young-Hwan Choi, Kyu-Heon Cho, Jihye Lee, William Jo and Min-Koo Han, “1.4 kV AlGaN/GaN HEMTs Employing As+ Ion Implantation on SiO2 Passivation Layer,” IEEE Power Electronics Specialists Conference, pp. 42-91, 2008.
[40] Sen Huang, Qimeng Jiang, Shu Yang, Chunhua Zhou, and Kevin J. Chen, “Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film,” IEEE Electron Device Letters, vol. 33, no. 4, pp. 516-518, April 2012.
[41] Zhikai Tang, Sen Huang, Qimeng Jiang, Shenghou Liu, Cheng Liu, and Kevin J. Chen, “High-Voltage (600-V) Low-Leakage Low-Current-Collapse AlGaN/GaN HEMTs With AlN/SiNx Passivation,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 366-368, March 2013.
[42] Hideyuki Hanawa, Hiraku Onodera, Atsushi Nakajima, and Kazushige Horio, “Numerical Analysis of Breakdown Voltage Enhancement in AlGaN/GaN HEMTs With a High-k Passivation Layer,” IEEE Transactions on Electron Devices, vol. 61, no. 3, pp. 769-775, March 2014.
[43] Huili Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High Breakdown Voltage AlGaN–GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Letters, vol. 25, no. 4, pp. 161-163, April 2004.
[44] Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda, Ichiro Omura, and Tsuneo Ogura, “Design Optimization of High Breakdown Voltage AlGaN–GaN Power HEMT on an Insulating Substrate for RONA–VB Tradeoff Characteristics,” IEEE Transactions on Electron Devices, vol. 52, no. 1, pp. 106-111, January 2005.
[45] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Letters, vol. 27, no. 9, pp. 713-715, September 2006.
[46] Morteza Fathipour, Negin Peyvast, Reza Azadvari, “Improving Performance in Single Field Plate Power High Electron Mobility Transistors (HEMTs) based on AlGaN/GaN,” 1st Asia Symposium on Quality Electronic Design, pp. 157-161, 2009.
[47] Eldad Bahat-Treidel, Oliver Hilt, Frank Brunner, Victor Sidorov, Joachim Wurfl, and Gunther Trankle, “AlGaN/GaN/AlGaN DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs),” IEEE Transactions on Electron Devices, vol. 57, no. 6, pp. 1208-1216, June 2010.
[48] Saba Rajabi, Ali A. Oroui, Hamid Amini Moghadam, S. E. Jamali Mahabadi, “A Novel Double Field-Plate Power High Electron Mobility Transistor based on AIGaN/GaN for Performance Improvement,” ICSCCN, pp. 272-276, 2011.
[49] Gang Xie, Edward Xu, Junmin Lee, Niloufar Hashemi, Bo Zhang, Fred Y. Fu, and Wai Tung Ng, “Breakdown-Voltage-Enhancement Technique for RF-Based AlGaN/GaN HEMTs With a Source-Connected Air-Bridge Field Plate,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 670-672, September 2012.
[50] Khushboo Sharma, Avirup Dasgupta, Sudip Ghosh, Sheikh Aamir Ahsan, Sourabh Khandelwal, and Yogesh Singh Chauhan, “Effect of Access Region and Field Plate on Capacitance behavior of GaN HEMT,” IEEE EDSSC, pp. 499-502, 2015.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2018-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明