博碩士論文 105521026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.143.9.115
姓名 王秋婷(Chiu-Ting Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用線穿隧及非均勻通道厚度提升三五族 穿隧場效電晶體性能之研究
(Performance Enhancement of III-V Tunnel FETs considering Line Tunneling and Non-uniform Channel Thickness)
相關論文
★ 超薄層異質通道場效電晶體及單石三維靜態隨機存取記憶體考慮負交疊設計之研究★ 負電容場效電晶體之微縮與變異度分析
★ 鐵電場效電晶體記憶體之穩定度及性能分析★ 分析負電容堆疊式環繞閘極場效電晶體之特性及負電容鰭式場效電晶體之隨機電報雜訊
★ 提升負電容穿隧場效電晶體效能之最佳化設計★ 應用於記憶邏輯運算之非揮發性鐵電場效電晶體記憶體
★ 使用分離式閘極之高能量效率非揮發性鐵電場效電晶體記憶體★ 研究製程變異度對負電容場效電晶體與電路的類比性能之影響
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作★ 分析與設計低電壓操作之非揮發性鐵電場效電晶體記憶體
★ 高密度 4T 與 6T 低溫鰭式場效電晶體靜態隨機存取記憶體★ 積層型三維邏輯電路之性能分析
★ 無接面鐵電場效電晶體與量測模式對增強極化之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著CMOS尺寸微縮,降低供應電壓,以降低功率消耗,是現階段CMOS積體電路最大的目標,低功率消耗之應用包含IoT (Internet-of-Things) 技術以及穿戴式電子用品等。傳統金氧半場效電晶體(MOSFET)在室溫下受到波茲曼分布的限制,其次臨界擺幅(Subthreshold swing)無法低於60mV/dec。因此,具有較陡峭次臨界擺幅之穿隧場效電晶體(Tunnel FETs, TFETs),隨之被提出,因其次臨界擺幅表現可低於60mV/dec,在降低供應電壓的條件下(低於0.5伏特),其效能表現可優於傳統金氧半場效電晶體的效能,是半導體積體電路應用在未來發展最為重要的關鍵。三五族異質接面穿隧場效電晶體因其較低的能隙(Band-gap),可增加穿隧機率,更有利於製作為穿隧場效電晶體以提升其導通電流。三五族材料因為其較低的能態密度,使得三五族穿隧場效電晶體在高操作電壓時,不易得到高導通電流,但在低操作電壓時,其導通電流仍可表現優於傳統金氧半場效電晶體。因此本論文建立三五族(GaAsSb/InGaAs)穿隧場效電晶體TCAD模型,探討三五族穿隧場效電晶體之結構優化,分析並提出可提升導通電流之最佳結構。
  第一部分為利用增加磊晶層(Epitaxial layer)在閘極(Gate)及源極(Source)間產生線穿隧(Line tunneling)接面電流,增加穿隧面積進而提升導通電流,並加以探討不同通道厚度(Tch)、同質接面(Homo-junction)材料與異質接面(Hetero-junction)材料的穿隧能障(Effective tunneling barrier heigh, Ebeff)、磊晶層厚度(Tepi)、閘極與源極間交疊長度(Lovs)以及閘極與汲極(Drain)間非交疊長度(Underlap length, Lund)對線穿隧場效電晶體電性之影響,並提出最佳化線穿隧場效電晶體之設計。與一般超薄層點穿隧場效電晶體(UTB p-i-n TFET w/o Tepi)之電特性做比較,Lovs為10nm以及Tepi為2nm的線穿隧場效電晶體,導通電流能有3.3倍的提升,Ion並能達到406 (μA/μm) @ Vdd = 0.5V。
  第二部分為利用非圴勻通道厚度,使局部較窄的通道其能隙受量子侷限效應的影響而增加,優化非均勻通道厚度(Non-uniform Tch),達到同時改善截止電流(Ioff)以及導通電流,首先探討不同源極摻雜濃度(Ns)、汲極摻雜濃度(Nd)以及通道厚度(Tch)對異質接面第二型(Type II)以及第三型(Type III)均勻通道厚度(Uniform Tch)穿隧場效電晶體電性之影響,並更進一步探討元件結構改變對非均勻通道厚度穿隧場效電晶體性能之影響,例如:源極與通道間厚度(Ts)、汲極與通道間厚度(Td)以及較厚通道端長度(Lw),最後一部分利用汲極與閘極間非交疊(Lund)設計進一步改善Type III截止電流,當Lund = 8nm時,截止電流可以有70.5%的改善。
摘要(英) Power scaling is one of the major challenges in modern CMOS technology for ultra-low power applications, such as emerging IoT (Internet of Things) technologies and wearable devices. Lowering the supply voltage (Vdd) is an efficient technique to achieve ultra-low power consumption for circuits. Device with steep subthreshold slope is essential in order to achieve energy-efficient switching and low leakage power as supply voltage scaling. Conventional MOSFET exhibits the lower-bound limitation of subthreshold swing (SS) which is about 60 mV/dec at room temperature. Tunneling field-effect transistors (TFETs) have been actively explored to tackle this problem and provide steep subthreshold slope below 60mV/dec [1].

Tunnel field-effect transistors (Tunnel FETs, TFETs), which have a subthreshold swing below 60 mV/decade, were proposed as an alternative to conventional MOSFETs in response to the quest for lower power consumption integrated circuits. III-V channel materials become promising materials for TFETs due to their lower bandgap which leads to better tunneling efficiency. However, III-V TFETs still show lower drive current than conventional Si MOSFET at high supply voltage due to their low density of states.

This work aims at structure optimization of III-V TFETs for improving the drive current based on InGaAs/GaAsSb heterostructures. The InGaAs/GaAsSb TFET simulation framework with TCAD tool was established in this work. First, a novel TFET structure with line tunneling was proposed and analyzed comprehensively. By inserting an expitaxial layer between source and gate dielectric regions, TFET consists both lateral point tunneling and line tunneling. Compared with the conventional p-i-n TFET with point tunneling only. The on current of TFETs with epi layer and line tunneling can be further increased due to the increased tunneling area. We analyze the impact of device design on the TFET with epi layer comprehensively. The impacts of epi layer thickness (Tepi), gate-to-source overlap length (Lovs), source thickness, and gate-to-drain underlap length (Lund) on the Id-Vg characteristics of heterojunction III-V TFETs were analyzed comprehensively in this work. This study provides the device design guidelines for performance enhancement of TFETs with epi layer. Compared with the conventional TFET without epitaxial layer, the heterojunction TFET with epitaxial layer and gate to source overlap length = 10 nm shows 3.3 times higher on currents and Ion = 406 (μA/μm) at Vdd = 0.5V.

Sencond, GaAs1-xSbx/In1-yGayAs heterojunction TFETs with bandgap engineering by using non-uniform channel thickness (Tch) are analyzed comprehensively for improving Ion and suppressing ambipolar leakage. Quantum confinement induced bandgap widening as a function of Tch is considered. We analyze the impact of source doping concentration (Ns), drain doping comcentration (Nd), and channel thickness (Tch) on the Id-Vg characteristics of uniform Tch Type II and Type III heterojunction TFETs. The impact of source/channel junction thickness (Ts), drain/channel junction thickness (Td), and thicker channel length (LW) on the Id-Vg characteristics of non-uniform type-II TFETs are also analyzed comprehensively. Finally, the Ioff of type-III non-uniform TFETs can be further reduced by using gate-to-drain underlap design. The Ioff can be improved by 70% as Lund changes from 0 nm to 8 nm.
關鍵字(中) ★ 穿隧場效電晶體
★ 磊晶層
★ 線穿隧
★ 點穿隧
★ 同質接面
★ 異質接面
關鍵字(英) ★ Tunnel FET (TFET)
★ epitaxial layer
★ line tunneling
★ point tunneling
★ homo-junction
★ hetero-junction
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XVIII
第一章 導論 1
1.1 背景與相關研究 1
1.2 研究動機 12
1.3 論文架構 13
第二章 線穿隧場效電晶體之結構優化及性能提升研究 14
2.1 前言 14
2.2 線穿隧場效電晶體之元件設計 16
2.2.1 元件模擬參數與元件結構 16
2.2.2 分析有效能障(Effective Barrier)對線穿隧場效電晶體之影響 20
2.2.3 分析磊晶層厚度(Epitaxial layer thickness)對線穿隧場效電晶體之影響 23
2.2.4 分析閘極與源極間交疊長度對線穿隧場效電晶體之影響 27
2.2.5分析閘極與汲極間非交疊長度以及源極厚度對線穿隧場效電晶體之影響 30
2.3 線穿隧場效電晶體加入反摻雜(Counter doping)之研究 34
2.3.1 元件模擬參數與元件結構 34
2.3.2 分析反摻雜在異質接面穿隧式場效應電晶體之影響 36
2.4 線穿隧場效電晶體考慮不同銻砷化鎵/砷化銦鎵比例之研究 40
2.4.1 元件模擬參數與元件結構 40
2.4.2 分析有效能障對垂直線穿隧之影響 42
2.4.3 分析閘極及源極間交疊長度之影響 46
2.5 結論 50
第三章 非均勻通道厚度(Non-uniform Channel Thickness)對穿隧場效電晶體性能之研究 53
3.1 前言 53
3.2 元件模擬參數與元件結構 54
3.3 均勻通道厚度穿隧場效電晶體之電性分析 57
3.3.1 分析量子侷限效應之影響 57
3.3.2 分析源極及汲極摻雜濃度之影響 58
3.4 非均勻通道厚度穿隧場效電晶體之電性分析 61
3.4.1 元件設計之最佳化 61
3.4.2 分析閘極與汲極非交疊長度對異質接面第三型穿隧場效電晶體之影響 67
3.5 結論 71
第四章 總結 73
參考文獻 76
附錄 80
5.1 線穿隧場效電晶體之元件設計 80
5.1.1分析有效能障(Effective Barrier)對線穿隧場效電晶體之影響 80
5.1.2 分析磊晶層厚度(Epitaxial layer thickness)對線穿隧場效電晶體之影響 82
5.1.3分析閘極與源極間交疊長度對線穿隧場效電晶體之影響 86
5.1.4分析反摻雜在同質接面穿隧式場效應電晶體之影響 91
參考文獻 [1] Alan C. Seabaugh and Qin Zhang, “Low-Voltage Tunnel Transistorsfor Beyond CMOS Logic,” Proceedings of the IEEE, Vol. 98, No. 12, December 2010.
[2] I.R. Committee, “International Roadmap for Devices and Systems ,” 2016 Edition. More Moore white paper.
[3] J. Appenzeller, Y.-M. Lin, J. Knoch and Ph. Avouris, “Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors,” The American Physical Society, Nov. 2004
[4] S. Mokerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallet, A. Ali,
T. Mayer, V. Narayanan, D. Schlom, A. Liu and S. Datta, “Experimental Demonstration of 100nm Channel Length In0.53Ga0.47As-based Vertical Inter-band Tunnel Field Effect Transistors (TFETs) for Ultra Low-Power Logic and SRAM Applications,” IEEE International Electron Devices Meeting (IEDM), 2009, pp. 13.7.1-13.7.3
[5] D. K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert,
T. Mayer, V. Narayanan, J. M. Fastenau, D. Loubychev, A. K. Liu and S. Datta, “Demonstration of MOSFET-Like On-Current Performance in Arsenide/Antimonide Tunnel FETs with Staggered Hetero-junctions for 300mV Logic Applications,” IEEE International Electron Devices Meeting (IEDM), 2011, pp. 33.5.1-33.5.4
[6] S. Sant and A. Schenk, "Methods to Enhance the Performance of InGaAs/InP Heterojunction Tunnel FETs," in IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 2169-2175, May 2016.
[7] S. Glass et al., “Investigation of TFETs with Vertical Tunneling Path for Low Average Subthreshold Swing,” Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials (SSDM), 2017.
[8] E. Ko, H. Lee, J. D. Park and C. Shin, "Vertical Tunnel FET: Design Optimization With Triple Metal-Gate Layers," in IEEE Transactions on Electron Devices, vol. 63, no. 12, pp. 5030-5035, Dec. 2016.
[9] Y. Morita et al., "Performance Enhancement of Tunnel Field-Effect Transistors by Synthetic Electric Field Effect," in IEEE Electron Device Letters, vol. 35, no. 7, pp. 792-794, July 2014.
[10] K. Alam, "Orientation Engineering for Improved Performance of a Ge-Si Heterojunction Nanowire TFET," in IEEE Transactions on Electron Devices, vol. 64, no. 12, pp. 4850-4855, Dec. 2017.
[11] K. Narimani et al., "Silicon GAA NW TFET inverters with suppressed ambipolarity," 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, 2016, pp. 31-34.
[12] M. Ehteshamuddin, S. A. Loan, M. Rafat and A. G. Alharbi, "A junctionless inverted-TFET with increased ON-current and reduced ambipolarity," 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, 2017, pp. 618-621.
[13] Z. Yang, "Tunnel Field-Effect Transistor With an L-Shaped Gate," in IEEE Electron Device Letters, vol. 37, no. 7, pp. 839-842, July 2016.
[14] S. W. Kim, J. H. Kim, T. J. K. Liu, W. Y. Choi and B. G. Park, "Demonstration of L-Shaped Tunnel Field-Effect Transistors," in IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1774-1778, April 2016.
[15] Jun Z. Huang et al., "Scalable GaSb/InAs Tunnel FETs With Non-uniform Body Thickness,” IEEE Transactions on Electron Devices, vol. pp, no.99, pp. 1 - 6, November 2016.
[16] Fan W. Chen et al., ” Thickness Engineered Tunnel Field-Effect Transistors based on Phosphorene,” IEEE Electron Device Letters, vol. pp, no.99, pp. 1 - 1, November 2016.
[17] O. P. Kilpi, J. Wu, J. Svensson, E. Lind and L. E. Wernersson, "Vertical heterojunction InAs/InGaAs nanowire MOSFETs on Si with Ion = 330 μA/μm at Ioff = 100 nA/μm and VD = 0.5 V," 2017 Symposium on VLSI Technology, Kyoto, 2017, pp. T36-T37.
[18] X. Zhao, A. Vardi and J. A. del Alamo, "Sub-Thermal Subthreshold Characteristics in Top–Down InGaAs/InAs Heterojunction Vertical Nanowire Tunnel FETs," in IEEE Electron Device Letters, vol. 38, no. 7, pp. 855-858, July 2017.
[19] M. Kobayashi, K. Jang, N. Ueyama and T. Hiramoto, "Negative Capacitance for Boosting Tunnel FET performance," in IEEE Transactions on Nanotechnology, vol. 16, no. 2, pp. 253-258, March 2017.
[20] P. K. Dubey and B. K. Kaushik, "T-Shaped III-V Heterojunction Tunneling Field-Effect Transistor," in IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3120-3125, Aug. 2017.
[21] C.-T. Wang and V. P.-H. Hu, “Device Designs of III-V Tunnel FETs for Performance Enhancements through Line Tunneling,” IEEE Electron Devices Technology and Manufacturing (EDTM), Kobe, Japan, March 2018.
[22] D. Mohata et al., "Barrier-Engineered Arsenide–Antimonide Heterojunction Tunnel FETs With Enhanced Drive Current," in IEEE Electron Device Letters, vol. 33, no. 11, pp. 1568-1570, Nov. 2012.
[23] E. O. Kane, “Theory of Tunneling,” Journal of Applied Physics, vol. 32, no. 1, pp. 83–91, 1961.
[24] Goldberg Yu.A. and N.M. Schmidt Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 62-88.
[25] New Semiconductor Materials. (http://www.ioffe.ru/SVA/NSM/Semicond/GaAsSb/bandstr.html)
[26] Huichu Liu, Vijaykrishnan Narayanan, Suman Datta, Penn State III-V Tunnel FET Model Manual, 2015.
[27] SaurabhF et al., Fundamentals of Tunnel Field-Effect Transistors, CRC Pr I Llc, 2016.
[28] C.-T. Wang and V. P.-H. Hu, “Analysis of Heterojunction GaAs1-xSbx/In1-yGayAs Tunnel FETs considering Line Tunneling” IEEE International Symposium on Next-Generation Electronics (ISNE), Taipei, Taiwan, May 2018.
[29] T. Yu et al., “In0.53Ga0.47As/GaAs0.5Sb0.5 Quantum-Well Tunnel-FETs With Tunable Backward Diode Characteristics,” IEEE EDL, vol. 34, no. 12, pp. 1503, 2013.
[30] B. Rajamohanan et al., “0.5 V Supply Voltage Operation of In0.65Ga0.35As/GaAs0.4Sb0.6 Tunnel FET,” IEEE EDL, vol. 36, no. 1, pp. 20-22, Jan. 2015.
[31] R. Bijesh et al., “Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 near broken-gap tunnel FET with ION=740μA/μm, GM=70μS/μm and gigahertz switching performance at VDS=0.5V,” 2013 IEEE IEDM, pp. 28.2.1-28.2.4, 2013.
[32] C.-T. Wang and V. P.-H. Hu, “III-V Heterojunction TFET with Bandgap Engineering for Performance Enhancement and Ambipolar Leakage Suppression,” Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials (SSDM), Sendai, Japan, September 2017.
[33] V. P.-H. Hu and C.-T. Wang, "Optimization of III–V heterojunction tunnel FET with non-uniform channel thickness for performance enhancement and ambipolar leakage suppression," 2018 Jpn. J. Appl. Phys. 57 04FD18.
指導教授 胡璧合(Vita Pi-Ho Hu) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明