博碩士論文 105521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.227.24.208
姓名 陳威融(WEI-JUNG CHEN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於改良式粒子群演算法之永磁同步馬達控制器設計
(Design of Permanent Magnet Synchronous Motor Controller Based on Improved Particle Swarm Optimization)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出了一個改良式的粒子群演算法,稱為排名切換式粒子群演算法(Rank Switching Self-Learning Particle Swarm Optimization, RSLPSO),利用排名機制及切換機制,來選擇粒子在每個迭代時期最適合的更新公式,有效的加快粒子的收斂速度,並且將低了運算量,並加入了學習機制,讓粒子之間的交流可以更頻繁,有效的做經驗交流,增加粒子的多樣性,使得粒子不易落入區域最佳解中。本論文使用16個測試函數來測試提出的改良式粒子群演算法的效能,而測試結果顯示,本論文所提出的改良法能夠在大部分的測試函數下表現優異,最後應用在交流馬達控制器的參數搜索,及時的找到馬達在每個取樣時間所需要的最佳控制器參數,來提升馬達的運動表現,而從馬達的響應圖中可以分析出使用本論文所提出的粒子群演算法可以有效的找到最佳的控制器參數。
摘要(英) This thesis proposes an improved particle swarm algorithm called Rank Switching Particle Swarm Optimization (RSLPSO), which uses a ranking mechanism and a switching mechanism to select the suitable update formula at each iteration time, effectively speed up the convergence of particles, and will reduce the amount of computation, and add a learning mechanism, so that communication between particles can be more frequent, effective experience exchanges, increase the diversity of particles, making particles not easily fall into the local optimum. In this dissertation, 16 test functions are used to test the performance of the proposed improved particle swarm algorithm. The test results show that the improved method proposed in this paper can perform well under most of the test functions. Finally, it is applied to the parameter search of the AC motor controller to find the best controller parameters needed by the motor at each sampling time in order to improve the motor′s performance. From the motor′s response graph, it can be analyzed the proposed particle swarm algorithm can effectively find the best controller parameters.
關鍵字(中) ★ 粒子群演算法
★ 馬達驅動控制
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.2論文架構 2
第二章 粒子群演算法 3
2.1 傳統粒子群演算法介紹 3
2.2 傳統粒子群演算法的基本公式 3
2.3 慣性權重 4
第三章 8
3.1 經驗的傳承 8
3.1.1 粒子間的交流 8
3.1.2 自我學習機制 9
3.2 改良式演算法搜尋策略 13
3.2.1 切換機制介紹 13
3.2.2 排名機制介紹 14
3.3 排名切換自我學習粒子群演算法 14
3.4 學習函數比較 17
3.4.1 10維的比較 21
3.4.2 30維的比較 22
第四章 實驗結果 24
4.1 目標函數 24
4.2 測試函數在10維下的結果 29
4.3 測試函數在30維下的結果 41
第五章 RSLPSO應用於永磁同步馬達之PI控制器參數最佳化 53
5.1 比例積分控制器設計 53
5.2 永磁同步馬達數學模型 54
5.3 馬達轉速估測方程式 55
5.4 RSLPSO控制器模擬 56
5.5 結果與討論 59
第六章 總結與未來展望 63
6.1 結論 63
6.2 未來展望 63
參考文獻 64
參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks,” Vol. IV, pp. 1942−1948, 1995.
[2] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[3] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, Vol. 15, pp. 3632-3639, 2010.
[4] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , Vol. 36, No. 6, pp. 1407-1416, 2006.
[5] G. Zeng and Y. Jiang, “A Modified PSO Algorithm with Line Search,” In Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4, 2010.
[6] H. Babaee and A. Khosravi, “An Improve PSO Based Hybrid Algorithms,” In Proceedings of 2011 International Conference on Management and Service Science, pp. 1-5, 2011.
[7] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
[8] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[9] Lin Chuan, Feng Quanyuan. “The Standard Particle Swarm Optimization Algorithm Convergence Analysis and Parameter Selection” School of Information Science and Technology, Southwest Jiaotong University, Chengdu,610031, China, Vol. 2007
[10] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
[11] Asanga Ratnaweera, Saman K. Halgamuge, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients’’ IEEE Transactions On Evolutionary Computation, VOL. 8, NO. 3, JUNE 2004
[12] N. M. Kwok, D. K. Liu, K. C. Tan, and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[13] Y. Shi and R. C. Eberhart, “Evolutionary Programming VII, Parameter Selection in Particle Swarm Optimization,” Springer Berlin Heidelberg, Vol. 1447, pp. 591–600, 1998.
[14] 吳讚展,「自調整非線性慣性權重粒子群演算法」,國立中央大學,碩士論文,民國101年。
[15] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
[16] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Elsevier Science B.V., Vol. 85, pp. 317-325, 2003.
[17] W. H. Ip, D. Wang, and V. Cho, “Aircraft ground service scheduling problems and their genetic algorithm with hybrid assignment and sequence encoding scheme,” IEEE Systems Journal, Vol. 7, No. 4, 2013.
[18] Jinglei Guo, Bowen Wang, “Particle Swarm Optimization with Gaussian Disturbance’’, 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration
[19] C. Liu and C. Ouyang, “An adaptive fuzzy weight PSO algorithm,” 2010 Fourth International Conference on Genetic and Evolutionary Computing, pp. 8, 10, 13-15, 2010.
[20] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 26, No. 1, pp. 29, 41, 1996.
[21] .Kennedy and W. M. Spears, “Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,” The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 78-83, 1988.
[22] T. -H Kim, I. Maruta, and T. Sugie, “Robust PID controller tuning based on the constrained particles swarm optimization,” Automatica, Vol. 44, no. 4, pp.1104-1110, 2008.
[23] A. W. Mohemmed, Z. Mengjie, and N. C. Sahoo, “A new particle swarm optimization based algorithm for solving short-paths tree problems,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 3221-3225, 2007.
[24] J. P. Papa, L. M. G. Fonseca, and L. A. S. de Carvalho, “Projections onto convex sets through particle swarm optimization and its application for remote sensing image restoration,” Pattern Recognition Letters. Vol. 31, pp. 1876-1886, 2010.
[25] S. Sina Sebtahmadi , Hanieh Borhan Azad , S. Hr. Aghay Kaboli , Saad Mekhilef, “A PSO-DQ Current Control Scheme for Performance Enhancement of Z-Source Matrix Converter to Drive IM Fed by Abnormal Voltage’’ IEEE Transactions On Power Electronics, Vol. 33, No. 2, February 2018
[26] Abdullah S. Daoud, Ahmed Sallam, Mohamed E. Wheed,“Improving Arabic Document Clustering using K-Means Algorithm and Particle Swarm Optimization’’ Intelligent Systems Conference 2017 7-8 September 2017 | London, UK
[27] 張伯墉,「適應性自我學習粒子群演算法」,桃園市:國立中央大學,碩士論文,民國105年。
[28] 曾柏憲,「切換式自我學習粒子群演算法」,桃園市:國立中央大學,碩士論文,民國 106 年。
[29] J. Kennedy and R. Eberhart, “The particle swarm optimization: Social adaptation of knowledge,” In Proceedings of the International conference on Evolutionary Computation, pp. 303-308, 1997.
[30] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 698–705, 2009.
[31] N. Iwasaki, K. Yasuda and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[32] P. N. Suganthan, N. Hansen, J. J. Liang and K. Deb, Y. -P. Chen, A. Auger & S. Tiwari, “Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005.
[33] M. Pant, T. Radha and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[34] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” In Lecture series on Computer and Computational Sciences, Vol. 1, pp. 868-873, 2004.
[35] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:simpler, maybe better,” IEEE Transactions on Evolutionary Computation, Vol. 8, pp. 204-210, 2004.
[36] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005.
[37] Meysam Rahmati, Reza Effatnejad and Amin Safari, “Comprehensive Learning Particle Swarm Optimization (CLPSO) for Multi-objective Optimal Power Flow,” Indian Journal of Science and Technology, Vol 7(3), 262–270, March 2014
[38] Y. T. Juang, S. L. Tung and H. C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, Vol. 181, pp. 4539-4549, 2011.
[39] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240-255, 2004.
[40] 陳珈妤,「快速平衡粒子群最佳化方法」,桃園市:國立中央大學,碩士論文,民國100年。
[41] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,桃園市:國立中央大學,碩士論文,民國99年。
[42] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, Vol. 33, No. 3, pp. 859-871, 2004.
[43] 李憲昌,「維度經驗重心分享粒子群演算法」,桃園市:國立中央大學,碩士論文,民國102年。
[44] 顏淯翔,「改良式粒子群方法之影像追蹤系統應用」,桃園市:國立中央大學,碩士論文,民國103年。
[45] 王鈺潔,「自適應解分享粒子群演算法及其在螺旋電感最佳化設計之應用」,桃園市:國立中央大學,碩士論文,民國104年。
[46] 劉昌煥,「交流電機控制-向量控制與直接轉矩控制原理」,東華書局,2016年2月4版3刷。
[47] Lukichev D.V., Demidova G.L., “Speed Control in PMSM Drive with Non-Stiff Load and Unknown Parameters Using PI- and Fuzzy Adaptive PID Controllers’’, 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
[48] Yuan Zhou, Wendong Shang, Mingshan Liu1†, Xiaokun Li and Ying Zeng, “Simulation of PMSM Vector Control Based on a Self-tuning Fuzzy PI Controller’’, 2015 8th International Conference on BioMedical Engineering and Informatics (BMEI 2015)
[49] A. M. Nazelan, M. K. Osman, N. A. Salim, A. A. A. Samat, K. A. Ahmad, “PSO-Based Neural Network Controller for Speed Sensorless Control of PMSM’’, 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2017), 24–26 November 2017, Penang, Malaysia
[50] 陳建宇,「線上自調式粒子群優化演算法應用於永磁同步馬達控制器設計」,高雄市:國立中山大學,碩士論文,民國103年。
[51] Deepti Yadav1, Arunima Verma2, “Performance Analysis of Permanent Magnet Synchronous Motor Drive using Particle Swarm Optimization Technique’’, International Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems (ICETEESES–16)
指導教授 莊堯棠 審核日期 2018-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明