博碩士論文 105521094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.15.1.36
姓名 林儀禎(Yi-Chen Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於X頻段與Ka頻段系統之圓極化天線陣列設計
(Design of Circular Polarization Antenna Array for X-band and Ka-band Systems)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第五代行動通訊將會使用較高之頻段,其有高資料率、天線面積小等優點。但在高頻傳播時空氣損耗也會比較大,因此可以使用天線陣列提高增益,減少損耗造成的影響。
通常天線陣列中陣列因子在每個天線單元功率平均分布時會有最大方向性。本論文利用等效電路,估算若利用傳輸線調整輸入天線功率使其平均分佈會造成之損耗,評估功率平均分布之可行性。本論文實現一線極化網格天線陣列以及圓極化貼片天線陣列,網格天線陣列傳統上具有匹配電阻,本論文將電阻拔除改由天線取代。圓極化貼片天線陣列則是將線極化輻射單元更改為右手圓形偏極化貼片天線設計而成,此陣列使用循序旋轉技術將部份天線旋轉增加軸比頻寬。28 GHz版本使用使用國家晶片系統設計中心提供之RO-FR4複合四層板製程製作,10 GHz版本使用RO5880板材製作。
量測結果28 GHz及10 GHz線極化陣列天線量測頻寬分別為5.5% 和1.8%,而增益分別為7.2 dBi和12.9 dBi。28 GHz及10 GHz圓極化天線陣列量測頻寬分別為2.7% 和2.6%,軸比頻寬為1.1% 和2.3%,增益為7.3 dBic和13.6 dBic。
摘要(英) The fifth-generation mobile communication is likely to use higher frequency bands which have advantages such as high data rate and small antenna size. Nevertheless, the path-loss during high-frequency propagation will also be relatively large. Therefore, the antenna array can be used to increase the gain and reduce the impact of the loss.

The array factor in the antenna array will have a maximum value of directivity when antenna is excited uniformly. This thesis uses the equivalent circuit to estimate the loss of the transmission line to adjust the input antenna power to achieve uniform-distributed elements. To evaluate the feasibility of the average power distribution. In this thesis, a linearly polarized grid antenna array and a circularly polarized patch antenna array are realized. Grid antenna arrays traditionally have matching resistor. In this thesis, the resistance is replaced by an antenna. The circularly polarized patch antenna array is designed by changing the linearly polarized radiation element to a right-hand circularly polarized patch antenna. This array uses sequential rotation technology to rotate some of antennas and increase the axial ratio bandwidth. The 28-GHz antenna arrays use the RO-FR4 composite four-layer board process provided by the National Chip Implementation Center. The 10-GHz version uses RO5880 PCB.
The measured bandwidths of the 28-GHz and 10-GHz linearly polarized array antennas are 5.5% and 1.8%, respectively, and the gains are 7.2 and 12.9 dBi, respectively. The measured bandwidths of the 28-GHz and 10-GHz circularly polarized antenna arrays are 1.8% and 2.6%, respectively, the axial ratio bandwidths are 1.1% and 2.3%, and the gains are 7.3 and 13.6 dBic respectively.
The fifth-generation mobile communication is likely to use higher frequency bands which have advantages such as high data rate and small antenna size. Nevertheless, the path-loss during high-frequency propagation will also be relatively large. Therefore, the antenna array can be used to increase the gain and reduce the impact of the loss.

The array factor in the antenna array will have a maximum value of directivity when antenna is excited uniformly. This thesis uses the equivalent circuit to estimate the loss of the transmission line to adjust the input antenna power to achieve uniform-distributed elements. To evaluate the feasibility of the average power distribution. In this thesis, a linearly polarized grid antenna array and a circularly polarized patch antenna array are realized. Grid antenna arrays traditionally have matching resistor. In this thesis, the resistance is replaced by an antenna. The circularly polarized patch antenna array is designed by changing the linearly polarized radiation element to a right-hand circularly polarized patch antenna. This array uses sequential rotation technology to rotate some of antennas and increase the axial ratio bandwidth. The 28-GHz antenna arrays use the RO-FR4 composite four-layer board process provided by the National Chip Implementation Center. The 10-GHz version uses RO5880 PCB.
The measured bandwidths of the 28-GHz and 10-GHz linearly polarized array antennas are 5.5% and 1.8%, respectively, and the gains are 7.2 and 12.9 dBi, respectively. The measured bandwidths of the 28-GHz and 10-GHz circularly polarized antenna arrays are 1.8% and 2.6%, respectively, the axial ratio bandwidths are 1.1% and 2.3%, and the gains are 7.3 and 13.6 dBic respectively.
關鍵字(中) ★ 圓極化陣列
★ 28GHz
關鍵字(英)
論文目次 第一章 緒論 1
1-1研究動機 1
1-2 文獻回顧 2
1-3 章節介紹 4
第二章 天線功率平均分配公式推導 5
2-1功率平均分配目的 5
2-2功率平均分配於無損傳輸線 6
2-3功率平均分配於有損傳輸線 10
2-3-1 一段360°有損傳輸線功率平均分配 11
2-3-2兩個天線功率平均分配於有損傳輸線 12
2-3-3三個天線功率平均分配於有損傳輸線 14
2-3-4歸納N個天線功率平均分配於有損傳輸線 18
2-4 功率平均分配與功率不平均分配比較 21
2-5結論 27
第三章 使用天線原理介紹 28
3-1 簡介 28
3-2 網格天線陣列 29
3-3 貼片天線 30
3-4 圓極化貼片天線 32
第四章 28 GHz天線陣列設計 34
4-1線極化網格天線陣列 34
4-1-1 簡介 34
4-1-2 線極化網格天線陣列設計 35
4-1-3 模擬與量測 45
4-2 圓極化貼片天線陣列 52
4-2-1 簡介 52
4-2-2圓極化貼片天線陣列 54
4-2-3模擬與量測 60
4-3 結果與分析 70
第五章10GHz天線陣列設計 72
5-1線極化網格天線陣列 72
5-1-1簡介 72
5-1-2線極化網格天線陣列 72
5-1-3模擬與量測 78
5-2圓極化貼片天線陣列 85
5-2-1簡介 85
5-2-2圓極化貼片天線陣列 86
5-2-3模擬與量測 92
5-3 結果與分析 101
第六章 結論 102
參考文獻 103
參考文獻 [1] Jhon D.Kraus," A Backward Angle-Fire Array Antenna," IEEE Tras. Antenna and Propag.,Vol. 12, No. 1, pp. 48-50, Jan. 1964.
[2] R.Conti, J. Toth, T.Owling, and J. Wiss,"The Wire Grid Microstrip Antenna," IEEE Tras. Antenna and Propag.,Vol. 29, No. 1, pp. 157-166, Jan. 1981.
[3] Hisamatsu Nakano, Yasushi Iitsuka and Junji Yamauchi, “Loop-Based Circularly Polarized Grid Array Antenna With Edge Excitation,” IEEE Transactions on Antennas and Propagation, vol.61, pp.4045-4053, 2013.
[4] Lin Zhang and Yue Ping Zhang, "Differential grid array antenna to radiate pencil beam at 24 GHz for radar and sensor applications," IET Microwaves, Antennas & Propagation, vol. 8, pp. 765-769, 2014.
[5] Lin Zhang; Wenmei Zhang and Y. P. Zhang, "Microstrip Grid and Comb Array Antennas," IEEE Transactions on Antennas and Propagation, vol. 59, pp. 4077-4084, 2011.
[6] Mohammed Gulam Nabi Alsath1 and Malathi Kanagasabai, “Ultra-wideband grid array antenna for automotive radar sensors,” IET Microwaves, Antennas & Propagation, vol. 10, pp. 1613-1617, 2016.
[7] Samuel Afoakwa and Young-Bae Jung, “Wideband Microstrip Comb-Line Linear Array Antenna Using Stubbed-Element Technique for High Sidelobe Suppression,” IEEE Transactions on Antennas and Propagation, pp.5190-5199,2017
[8] Constantine A. Balanis, Antenna Theory : Analysis and Design,3rd edition,Wiley-Interscience,2005
[9] P. S. Hall, “Application of sequential feeding to wide bandwidth, circularly polarized microstrip patch arrays,” Proc. Inst. Elect. Eng., Pt. H, vol. 136, pp. 390–398, May 1989
指導教授 丘增杰 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明