博碩士論文 105521096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.142.173.76
姓名 傅奕文(Yi Wun Fu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用變壓器耦合與負偏壓技術於Ka頻段單刀雙擲開關器暨應用電容共振技術於X/Ka頻段III-V族開關器之研製
(Implementations on Ka-band Single Pole Double Throw Switches with Transformer-coupled and Negative Bias Techniques and X/Ka-band III-V Switches with Resonant Capacitance Technique)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要分兩部份,第一部份為應用於X頻段海事軍用雷達之單刀單擲切換器與單刀雙擲切換器,第一顆利用穩懋0.1 μm GaAs製程製作之單刀單擲切換器,採用並聯兩級切換器方式提升其隔離度,並利用串聯兩顆電晶體提升其1- dB功率壓縮點以符合海事雷達高功率需求,第二顆採用穩懋0.25 μm GaN製程設計單刀雙擲切換器,以等效四分之一波長有效降低晶片面積。
第二部份為應用於Ka頻段主被動毫米波收發機之單刀雙擲切換器,第一顆晶片採用穩懋0.1 μm GaAs製程設計單刀雙擲切換器,使用電容共振技術將連接於電晶體之傳輸線寄生電感共振掉,使其擁有良好之隔離度,並利用並聯之傳輸線與電晶體共振於Ka頻段使其有擁有良好之特性並給予電晶體之汲極端直流準位,第二顆晶片為第一顆晶片之改善電路,分別於兩級切換器之第二顆電晶體並聯一傳輸線,利用其等效電感,共振其電晶體,使其擁有比上一顆晶片更好之隔離度與插入損耗。
第三顆晶片為使用tsmcTM CMOS 90 nm 1P9M製程之單刀雙擲切換器,利用共振腔耦合之變壓器電路設計減緩隔離度與插入損耗之間的取捨,相較於傳統之行進波切換器有著更好的特性表現,再使用基底負偏壓技術減少寄生電容以改善插入損耗,並提升其1- dB功率壓縮點,最後使用閘極負偏壓技術,藉由臨界電壓與崩潰電壓找尋最適合之閘極偏壓,使功率承受能力能夠更進一步提升。
摘要(英) Recent years have witnessed active research in the development of RF and millimeter wave wireless system. The switch is a critical component for various functions, such as radar, transmitter-receiver (Tx/Rx) duplexing in a time-division-duplexing (TDD) system. To obtain a high performance switch, the choice of the process is a very important factor. For example, high-speed electron mobility and high breakdown voltage are the advantages of Ⅲ-Ⅴ process, and it is suitable for marine radar and marine navigation. However, it is hard to integrate to single chip and its chip size is big. In contrast, CMOS process has the superiorities of low cost, and easy integration. But its major drawback is having low breakdown voltage. We need to choose the suitable process to approach the specifications of the circuit. To support the research plan of the laboratory, we use GaN、GaAs and the CMOS processes to implement X band and Ka band switches.
The first work in Chapter 2 is fabricated in WINTM 0.1 μm GaAs technology. The author shunts two-stage switch to improve the isolation, and series two transistors to enhance the power handling. The simulated insertion loss of the proposed X band SPST is less than 0.8 dB, the isolation is better than 25 dB, and the IP1dB is 33 dBm.
The second work in Chapter 3 is fabricated in WINTM 0.25 μm GaN technology. The author used the equivalent quarter wavelength transmission line to reduce the chip size. The simulated insertion loss of the proposed X band SPDT is less than 1.97 dB, the isolation is better than 37 dB, and the IP1dB at 10 GHz is 47 dBm.
The third work in Chapter 4 is fabricated in WINTM 0.1 μm GaAs technology. The author used the resonant capacitance technique to resonate out the parasitic inductor of the transmission line to improve the isolation, and used distributed inductor to resonate out the parasitic capacitor of the MOSFET to improve the insertion loss. The simulated insertion loss of the first proposed Ka band SPDT is less than 1.8 dB, the isolation is better than 30 dB, and the IP1dB at 39 GHz is 35 dBm. The insertion loss of the second Ka band SPDT is less than 1.7 dB, and the isolation is better than 30 dB, and the IP1dB at 39 GHz is 32 dBm.
The forth work in Chapter 5 is fabricated in tsmcTM 90 nm CMOS technology. The author used the transformer -coupled and negative bias to improve the insertion loss and isolation without trade off both specifications. The simulated insertion loss of the proposed Ka band SPDT is less than 1.9 dB, the isolation is better than 40 dB, and the IP1dB at 35 GHz is 25 dBm.
關鍵字(中) ★ 單刀雙擲切換器
★ 基底偏壓
★ Ka頻段
★ 氮化砷
★ 氮化鎵
★ 互補式金氧半導體
關鍵字(英) ★ SPDT
★ body bias
★ Ka band
★ GaAs
★ GaN
★ CMOS
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節敘述 2
第二章 0.1 μm GaAs製程設計之X頻段單刀單擲切換器 3
2-1 前言 3
2-2 電路架構及原理 4
2-2-1 功率承受能力分析 7
2-3 模擬與量測結果 9
2-4 結果與討論 13
第三章 0.25 μm GaN製程設計之X頻段單刀雙擲切換器 14
3-1 前言 14
3-2 電路架構及原理 15
3-2-1 四分之一波長傳輸線之等效電路轉換 21
3-2-2 功率承受能力設計 23
3-3 模擬與量測結果 24
3-4 結果與討論 29
第四章 使用電容共振技術之0.1 μm GaAs製程實現Ka頻段之單刀雙擲切換器 30
4-1 前言 30
4-2 電路架構與原理 31
4-2-1 電容共振技術 32
4-3 應用分佈式電感暨共振式電容之單刀雙擲切換器電路架構與原理 38
4-4 模擬與量測結果 44
4-4-1 使用電容共振技術之單刀雙擲切換器模擬與量測 44
4-4-2 使用分佈式電感與電容共振技術之單刀雙擲切換器量測與模擬 52
4-5 結果與討論 57
第五章 使用變壓器與負偏壓技術設計實現Ka頻段之CMOS 90 nm製程單刀雙擲切換器 59
5-1 前言 59
5-2 電路架構與原理 60
5-2-1 共振腔耦合之變壓器電路設計 61
5-2-2 基底負偏壓技術 65
5-2-3 閘極負偏壓電路設計 69
5-3 量測與模擬結果 72
5-4 結果與討論 78
第六章 結論 80
6-1 結論 80
6-2 未來期許及研究方向 81
附錄A 使用氮化鎵製程之X 頻段高功率承受度混頻器 82
References 93
參考文獻 [1] R. Shu and Q. J. Gu, "A transformer-based V-band SPDT switch," IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 278-280, March 2017.
[2] D. Shin, D. W. Kang and G. M. Rebeiz, "A 0.01–8- GHz (12.5 Gb/s) 4 × 4 CMOS switch matrix," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 381-386, Feb. 2012.
[3] A. Tang et al., "A W-Band 65 nm CMOS/InP-hybrid radiometer & passive imager," in 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-3.
[4] P. Song, R. L. Schmid, A. C. Ulusoy and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, 2014, pp. 195-198.
[5] F. Steinhagen, H. Massler, W. H. Haydl, A. Hulsmann and K. Kohler, "Coplanar W-Band SPDT and SPTT resonated PIN diode switches," in 1999 29th European Microwave Conference, Munich, Germany, 1999, pp. 53-56.
[6] D. L. Ingram, K. Cha, K. Hubbard and R. Lai, "Q-band high isolation GaAs HEMT switches," in GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996, Orlando, FL, USA, 1996, pp. 289-292.
[7] L. Zhao, W. F. Liang, J. Y. Zhou and X. Jiang, "Compact 35–70 GHz SPDT switch with high isolation for high power application," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 485-487, May 2017.
[8] K. Hettak, T. Ross, N. Irfan, D. Gratton, M. C. E. Yagoub and J. Wight, "High-power broadband GaN HEMT SPST/SPDT switches based on resonance inductors and shunt-stacked transistors," in 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 215-218.
[9] V. Alleva et al., "High power microstrip GaN-HEMT switches for microwave applications," in 2008 European Microwave Integrated Circuit Conference, Amsterdam, 2008, pp. 194-197.
[10] K. Y. Lin, Wen-Hua Tu, Ping-Yu Chen, Hong-Yeh Chang, Huei Wang and Ruey-Beei Wu, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, Aug. 2004.
[11] N. Billstrom, J. Nilsson, A. Tengs and N. Rorsman, "High performance GaN front-end MMICs," in 2011 6th European Microwave Integrated Circuit Conference, Manchester, 2011, pp. 348-351.
[12] J. Janssen et al., "X-Band GaN SPDT MMIC with over 25 Watt linear power handling," in 2008 European Microwave Integrated Circuit Conference, Amsterdam, 2008, pp. 190-193.
[13] D. Muller, U. Lewark, A. Tessmann, A. Leuther, T. Zwick and I. Kallfass, "Active single pole double throw switches for D-band applications," in 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4.
[14] Kun-You Lin, Yu-Jiu Wang, Dow-Chih Niu and Huei Wang, "Millimeter-wave MMIC single-pole-double-throw passive HEMT switches using impedance-transformation networks," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1076-1085, Apr 2003.
[15] K. Hettak, T. Ross, N. Irfan, D. Gratton, M. C. E. Yagoub and J. Wight, "High-power broadband GaN HEMT SPST/SPDT switches based on resonance inductors and shunt-stacked transistors," in 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 215-218.
[16] A. Bettidi et al., "High power GaN-HEMT microwave switches for X-Band and wideband applications," in 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 329-332.
[17] J. P. B. Janssen, M. van Heijningen, G. Provenzano, G. C. Visser, E. Morvan and F. E. van Vliet, "X-Band robust AlGaN/GaN receiver MMICs with over 41 dBm power handling," in 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, Monterey, CA, 2008, pp. 1-4.
[18] V.Alleva et al., "High power microstrip GaN-HEMT switches for microwave applications," in 2008 European Microwave Integrated Circuit Conference, Amsterdam, 2008, pp. 194- 197.
[19] J. Janssen et al., "X-Band GaN SPDT MMIC with over 25 Watt linear power handling," in 2008 European Microwave Integrated Circuit Conference, Amsterdam, 2008, pp. 190-193.
[20] N. Billstrom, J. Nilsson, A. Tengs and N. Rorsman, "High performance GaN front-end MMICs," in 2011 6th European Microwave Integrated Circuit Conference, Manchester, 2011, pp. 348-351.
[21] H. Mizutani, N. Funabashi, M. Kuzuhara and Y. Takayama, "Compact DC -60- GHz HJFET MMIC switches using ohmic electrode-sharing technology," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1597-1603, Nov 1998.
[22] Kun-You Lin, Yu-Jiu Wang, Dow-Chih Niu and Huei Wang, "Millimeter -wave MMIC single-pole-double-throw passive HEMT switches using impedance-transformation networks," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1076-1085, Apr 2003.
[23] M. Hieda et al., "High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2453-2458, Dec 2001.
[24] D. P. Nguyen, A. V. Pham and F. Aryanfar, "A K-Band high power and high isolation stacked-FET single pole double throw MMIC switch using resonating capacitor," IEEEMicrowave and Wireless Components Letters, vol. 26, no. 9, pp. 696-698, Sept. 2016.
[25] Junghyun Kim, Won Ko, Sung-Ho Kim, Jinho Jeong and Youngwoo Kwon, "A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure," IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 505-507, Dec. 2003.
[26] K. Y. Lin, Wen-Hua Tu, Ping-Yu Chen, Hong-Yeh Chang, Huei Wang and Ruey-Beei Wu, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, Aug. 2004.
[27] L. Zhao, W. F. Liang, J. Y. Zhou and X. Jiang, "Compact 35–70 GHz SPDT Switch With High Isolation for High Power Application," IEEE Microwave and Wireless Com- ponents Letters, vol. 27, no. 5, pp. 485-487, May 2017.
[28] P. Bernkopf, M. Schindler and A. Bertrand, "A high power K/Ka-band monolithic T/R switch," in IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers, Boston, MA, USA, 1991, pp. 15-18.

[29] K. Y. Lin, Wen-Hua Tu, Ping-Yu Chen, Hong-Yeh Chang, Huei Wang and Ruey-Beei Wu, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, Aug. 2004.

[30] D. C. W. Lo et al., "Novel monolithic multifunctional balanced switching low-noise am- plifyers," IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2629-2634, Dec 1994.
[31] C. S. Cheng, S. W. Lin, C. C. Wei, H. C. Chiu and R. J. Yang, "A High Isolation 0.15 μm Depletion-Mode pHEMT SPDT Switch Using Field-Plate Technology," in 2007 Asia-Pacific Microwave Conference, Bangkok, 2007, pp. 1-4.
[32] H. Y. Chang and C. Y. Chan, "A low loss high isolation DC-60 GHz SPDT traveling- wave switch with a body bias technique in 90 nm CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 82-84, Feb. 2010.
[33] G. Y. Chen et al., "Cold-mode characteristics of 90 nm CMOS device with negative body bias and highly linear millimeter-wave switch applications,"in 2010 Asia-Pacific Microwave Conference, Yokohama, 2010, pp. 554-557.
[34] W. C. Lai, C. C. Chou, S. C. Huang, T. H. Huang and H. R. Chuang, "75–110- GHz W -band high-linearity traveling-Wave T/R switch by using negative gate/body-biasing in 90- nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 488-490, May 2017.
[35] R. Shu, J. Li, A. Tang, B. J. Drouin and Q. J. Gu, "Coupling-inductor- based hybrid mm-wave CMOS SPST switch," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 4, pp. 367-371, April 2017.
[36] Y. Wang et al., "A G-band SPST switch with 2.4-dB insertion loss and minimum 28.5-dB isolation using grounded co-planar waveguide folded coupled line topo- logy in 65- nm CMOS technology," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 1718-1721.
[37] H. Mizutani, N. Funabashi, M. Kuzuhara and Y. Takayama, "Compact DC-60- GHz HJFET MMIC switches using ohmic electrode-sharing technology," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1597-1603, Nov 1998.
[38] M. Parlak and J. F. Buckwalter, “A passive I/Q millimeter-wave mixer and switch in 45- nm CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1131–1139, Mar. 2013.
[39] X. L. Tang, E. Pistono, P. Ferrari and J. M. Fournier, "A traveling-wave CMOS SPDT Using slow-wave transmission lines for Millimeter-wave application," IEEE Electron Device Letters, vol. 34, no. 9, pp. 1094-1096, Sept. 2013.
[40] Junghyun Kim, Won Ko, Sung-Ho Kim, Jinho Jeong and Youngwoo Kwon, "A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure," IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 505-507, Dec. 2003.
[41] M.-C. Yeh, Z.-M. Tsai, K.-Y. Lin, et al., “A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13- μm CMOS process,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005.
[42] Y. Wang et al., "A G-band SPST switch with 2.4-dB insertion loss and minimum 28.5-dB isolation using grounded coplanar waveguide folded coupled line topology in 65-nm CMOS technology,"in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 1718-1721.
[43] J.-H. Tsai and C.-C. Wang, “A 25-55 GHz CMOS sub-harmonic direct-conversion mixer for BPSK demodulator,” in 2008 APMC Asia-Pacific Microwave Conference, Hong Kong, China, Dec. 2008.
[44] Jeng-Han Tsai, Pei-Si Wu, Chin-Shen Lin, Tian-Wei Huang, John G. J. Chern, and Wen-Chu Huang “A 25–75 GHz broadband Gilbert-Cell mixer using 90- nm CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, Apr. 2007.
[45] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, Aug. 2008
[46] Shan He and Carlos E. Saavedra, “An Ultra-Low-Voltage and Low-Power × 2 Subharmonic Downconverter Mixer,” IEEE Trans. Microw. Theory Tech., vol.60, no.2, pp.311-317, Feb. 2012.
[47] J.-H. Tsai, “Design of 1.2 V broadband, high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350–1360, May 2011.
[48] Hwann-Kaeo Chiou and Jui-Yi Lin, “Symmetric offset stack Balun in standard 0.13 mm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microw. Theory Tech., vol.59, no.6, pp.1529-1538, Jun. 2011.
[49] Hwann-Kaeo Chiou and Tsung-Yu Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18- μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 835–848, Apr. 2008
[50] Rahul M. Kodkani, Member, IEEE, and Lawrence E. Larson, Fellow, IEEE, "A 24-GHz CMOS passive subharmonic mixer/downconverter for zero-IF applications", IEEE Trans. Microw. Theory Tech., VOL. 56, NO. 5, MAY 2008
[51] O. Habibpour, J. Vukusic, and J. Stake, “A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 841–847, Feb. 2013.
[52] Chih-Sheng Yeh, Hsuan-Ling Kao, Jiun-Yi Ke, Bo-Wen Wang, Cheng-Lin Cho, Hsien-Chin Chiu, and Li-Chun Chang, ‘‘A 3.5 GHz antiparallel diode pair mixer in GaN-on-Si HEMT technology, ” High Speed Intelligent Communication Forum (HSIC), May., 2012
[53] Thuy T. Nguyen, Kohei Fujii, and Anh-Vu Pham, ‘‘Highly linear distributed mixer in 0.25- μm Enhancement-Mode GaAs pHEMT Technology, ” IEEE MICROWAVE AND IRELESS COMPONENTS LETTERS, vol. 27, No., 12, DEC., 2017.
[54] Rasmus Michaelsen, Tom Johansen, Kjeld Tamborg and Vitaliy Zhurbenko, ‘‘A passive X-Band double balanced mixer utilizing diode connected SiGe HBTs, ” Microwave Integrated Circuits Conference (EuMIC), 2013 European, Oct., 2013.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明