博碩士論文 105521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.145.52.182
姓名 呂沛珊(LU,PEI-SHAN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可組態之積體化微波被動元件設計
(Design of Configurable Integrated Microwave Passive Circuits)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以被動電路微小化與積體化為目標,並以縮小尺寸且不縮減頻寬為設計主軸。本研究提出以橋式T線圈替代理想傳輸線,應用於微型化15GHz和60GHz的枝幹耦合器、15GHz和60GHz鼠競耦合器及可組態微波被動電路等設計。於電路實現上,則使用電感與平行板電容,於互補金屬氧化物半導體(CMOS 180nm製程)與積體被動元件(IPD)製程中實現BTC及其應用電路。
首先,以CMOS 180nm製程實現微型化15GHz和60GHz的枝幹耦合器、15GHz和60GHz鼠競耦合器等四種電路設計,其中枝幹耦合器於60GHz時電路面積為0.56 mm x 0.505 mm(電氣尺寸0.112 x 0.101 λ_0^2 @ 60GHz),15GHz時電路尺寸為0.858 mm x 0.707 mm(電氣尺寸0.0429 x 0.0354 λ_0^2 @ 15GHz),而鼠競耦合器60GHz時電路面積為0.537 mm x 0.453mm(電氣尺寸0.107 x 0.09 λ_0^2 @ 60GHz),15GHz時電路面積為0.8488mm x 0.6554mm(電氣尺寸0.0424 x 0.0328 λ_0^2 @ 15GHz),均較既有設計大幅縮小。
其次於IPD製程提出一可組態微波被動元件,係以橋式T線圈為基本組件排成4×9的BTC陣列,再以鎊線決定Bridged-T Coil之間的連接方式,得以於單一晶片藉由鎊線改變連接方式,實現不同的功能(鼠競耦合器、枝幹耦合器、功率分配器、帶拒濾波器@2GHz、4GHz 、帶通濾波器@2GHz、4GHz),其電路尺寸為8.7mm×8.1mm。上述應用電路證實橋式T線圈架構的確能對被動電路面積有大幅度的尺寸縮減,且實現不縮減頻寬之特性。
摘要(英) This thesis aims at miniaturization and integration of passive circuits, by reducing the size without sacrificing the bandwidth. This study proposes to replace the ideal transmission line with a bridge-T coil for miniaturized 15GHz and 60GHz Branch Line Couplers, 15GHz and 60GHz Rat race Couplers and configurable microwave passive circuits. In circuit implementation, inductors and parallel plate capacitors are used in complementary metal oxide semiconductor (CMOS 180nm process) and integrated passive component (IPD) processes to realize bridge-T coils and the proposed circuits.
First, the circuit design of miniaturized 15GHz and 60GHz branch line couplers and 15GHz and 60GHz rat race couplers in the CMOS 180nm process are presented. The circuit area of the 60GHz branch line coupler is 0.56 mm x 0.505 mm (electrical size 0.112 x 0.101λ_0^2 @ 60GHz), while the circuit size of the 15GHz one is 0.858 mm x 0.707 mm (electrical size 0.0429 x 0.0354 λ_0^2 @ 15 GHz). The circuit area of the 60GHz rat race coupler is 0.537 mm x 0.453 mm (electrical size is 0.107 x 0.09λ_0^2@ 60GHz),and the circuit area of the 15GHz design is 0.8488mm x 0.6554mm (electrical size 0.0424 x 0.0328λ_0^2 @15GHz), which is greatly reduced compared with the existing design.
Secondly, a configurable microwave passive components in IPD is proposed, which is based on a 4×9 bridge-T coil array. The connection between the bridged-T coils is determined by the bound wires. Nine different functions (rat race coupler, branch line coupler, power divider, bandstop filter @2GHz, 4GHz, bandpass filter @2GHz, 4GHz) are realized by changing the connection states of the bridged-T coils by using the bound wires. The circuit size is 8.7 mm x 8.1 mm. The above mentioned application circuits prove that the bridge -T coil can indeed achieve very effective size reduction of the passive circuits without reducing the bandwidth.
關鍵字(中) ★ 微波被動元件
★ 積體化
★ 可組態
關鍵字(英)
論文目次 論文摘要 I
ABSTRACT II
致謝 III
目錄 VII
圖形列表 IX
表格列表 XVI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 4
第二章 KU-BAND / V-BAND微型化枝幹耦合器及鼠競耦合器 5
2.1 橋式T線圈 5
2.2 CMOS積體電路製程 10
2.3 電路設計與實作 11
2.3.1 橋式T線圈設計 11
2.3.2 耦合器設計及實作 16
2.4 小結 45
第三章 可組態微波被動元件 49
3.1 可組態微波被動元件功能介紹 49
3.1.1 枝幹耦合器(BRANCH LINE COUPLER),F0= 2GHZ 50
3.1.2 枝幹耦合器(BRANCH LINE COUPLER),F0= 2GHZ 51
3.1.3 功率分配器(POWER DIVIDER),F0= 4GHZ 52
3.1.4 帶拒濾波器(BANDSTOP FILTER),F0= 2GHZ 53
3.1.5 帶通濾波器(BANDPASS FILTER),F0= 2GHZ 54
3.1.6 帶拒濾波器(BANDSTOP FILTER),F0= 4GHZ 55
3.1.7 帶通濾波器Ⅰ(BANDPASS FILTER),F0= 4GHZ 56
3.1.8 帶通濾波器Ⅱ(BANDPASS FILTER),F0= 4GHZ 57
3.1.9 帶通濾波器Ⅲ(BANDPASS FILTER),F0= 4GHZ 58
3.2 積體被動元件製程 59
3.3 實作與量測驗證 60
3.3.1 電路實作 60
3.3.2 模擬與量測結果 70
3.4 小結 99
第四章 結論 100
參考文獻 103
參考文獻 [1] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立
中央大學,2011.
[2] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大
學, 2012
[3] C. L. Chang and C. H. Tseng, "Design of 38-GHz branch-line coupler in glass-substrate integrated passive device technology," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
[4] Y. T. Chen, C. L. Chang and C. H. Tseng, “A compact X-band CPW branch-line coupler using glass integrated passive device (GIPD) technology," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 276-278.
[5] C. y. Kuo, A. y. k. Chen, C. m. Lee and C. h. Luo, “Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process," in Electronics Letters, vol. 47, no. 16, pp. 924-925, Aug. 4 2011.
[6] Y. Chen et al., “A miniature 92–95 GHz on-chip slow-wave branch-line coupler,” 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 285-287
[7] M. Chiang, H. Wu, M. Lee and C. C. Tzuang, "Design of compact Ka-band monolithic branch-line coupler on silicon substrate," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 2124-2127.
[8] I. Haroun, C. Plett, Y. Hsu and D. Chang, "Compact 60-GHz IPD-based branch-line coupler for system-on-package V-band radios," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 7, pp. 1070-1074, July 2012.
[9] A. Talebzadeh and A. Abdipour, "Miniaturized six-port receiver for 60 GHz communication," 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, 2014, pp. 1406-1410.
[10] A. Singhania, R. Kumar, A. K. Raut, S. K. Dash and S. Pal, "Design of fractal shaped branch-line coupler," 2011 International Conference on Devices and Communications (ICDeCom), Mesra, 2011, pp. 1-3.
[11] W. Chen and G. Wang, "Design of novel miniaturized fractal-shaped branch-line couplers," 2007 Asia-Pacific Microwave Conference, Bangkok, 2007, pp. 1-3.
[12] J. He and B. Wang, "Compact branch-line coupler with meander high-impedance transmission line and port impedance matching," in The Journal of Engineering, vol. 2016, no. 4, pp. 92-93, 4 2016.
[13] C. Chen, L. Wang and S. Ho, "Comparative layout study of stacked CMOS synthetic quasi-TEM lines separated by the meshed ground shield and its application to 180 hybrid design," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 6, pp. 289-291, June 2011.
[14] Haroun, I., Hsu, Y.-C., and Chang, D.-C.: ‘60-GHz rat-race coupler using LG-CPW transmission lines in IPD technology’. Proc. IEEE Asia-Pacific Microwave Photonics Conf., Singapore, October 2011, pp. 284–287
[15] C. L. Chang and C. H. Tseng, "New compact Ka-band CPW rat-race coupler using GaAs MMIC technology," in Electronics Letters, vol. 49, no. 19, pp. 1227-1229, Sept. 12 2013.
[16] C. Tseng and C. Chang, "A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 7, pp. 2085-2092, July 2012.
[17] Min-Yu Huang and Hua Wang, "An ultra-compact folded inductor based mm-wave rat-race coupler in CMOS," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4.
[18] E. Garay, M. Huang and H. Wang, "A cascaded self-similar rat-race hybrid coupler architecture and its compact fully integrated Ka-band implementation," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 79-82
[19] R . Nakano, T. Kawai and A. Enokihara, "76GHz band rat-race circuit utilizing composite right-/left-handed transmission line without chip elements," 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 2019, pp. 190-193.
[20] Jian-Gang Liang, Tang-Jing Li and Ya-Qiao Liu, "Novel compact broadband rat-race coupler combined fractal geometry with composite right/left handed transmission line," 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, 2016, pp. 4658-4665.
[21] W. Chang, C. Liang and C. Chang, "Slow-wave broadside-coupled microstrip lines and its application to the rat-race coupler," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 6, pp. 361-363, June 2015
[22] S. Bayaskar, D. Brahme and K. Shambavi, "Compact rat race coupler with harmonic suppression using circular defected ground structure (CDGS)," 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, 2016, pp. 316-319
[23] J. Lee, E. J. Naglich, H. H. Sigmarsson, D. Peroulis, and W. J. Chappell,“Tunable inter-resonator coupling structure with positive and negative values and its application to the field-programmable filter array (FPFA),” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3389–3400, Dec.2011.
[24] T. Yang and G. M. Rebeiz, "A 1.9–2.6GHz filter with both bandpass-to-bandstop reconfigurable function and bandpass-and-bandstop cascading function," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 264-266.
[25] T. Yang and G. M. Rebeiz, "Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2288-2297, July 2017.
[26] D. Psychogiou, R. Gómez-García and D. Peroulis, "Recent advances in reconfigurable microwave filter design," 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, 2016, pp. 1-6.
[27] M. Zhou, J. Shao, B. Arigong, H. Ren, J. Ding and H. Zhang, "A novel 3dB directional coupler with reconfigurable performance," Texas Symposium on Wireless and Microwave Circuits and Systems, Waco, TX, 2014, pp. 1-4.
[28] H. N. Chu, H. Liao, G. Li and T. Ma, "Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler," 2017 47th European Microwave Conference (EuMC), Nuremberg, 2017, pp. 1077-1080.
[29] O. D. Gurbuz and G. M. Rebeiz, "A 1.6–2.3-GHz RF MEMS reconfigurable quadrature coupler and its application to a 360ºreflective-type phase shifter," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 414-421, Feb. 2015.
[30] P. Chi and C. Huang, "Reconfigurable 1.5–2.5-GHz phase shifter with 360º r elative phase-shift range and reduced insertion-loss variation," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 897-899
[31] Y. Ushijima, H. Yukawa, T. Yuasa and N. Yoneda, "Compact multi-beam forming network with three-way power divider combined rat-race coupler and branch-line coupler," 2018 48th European Microwave Conference (EuMC), Madrid, 2018, pp. 129-132.
[32] B. Rong, J. Burghartz, L. Nanver, B. Rejaei and M. van der Zwan, "Surface-
passivated high-resistivity silicon substrates for RFICs", IEEE Electron Device
Lett., vol. 25, no. 4, pp. 176-178, Apr. 2004.
[33] T. S. Horng, J. M. Wu, L. Q. Yang and S. T. Fang, "A novel modified-T quivalent
circuit for modeling LTCC embedded inductors with a large bandwidth," IEEE
MTT-S International Microwave Symposium Digest, 2003, Philadelphia, PA, USA,
2003, pp. 1015-1018 vol.2.
[34] M. Pozar, Microwave Engineering, 3rded., Jhon Wiley & Sons, Inc., 2005
[35] W. R. Eisenstadt and Y. Eo, ”S-parameter-based IC interconnect transmission line
characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15,
pp. 483–490, Aug. 1992
指導教授 林祐生 審核日期 2019-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明