博碩士論文 105521116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.187.121
姓名 張皓宇(Hao-Yu Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以波動數位濾波器實現類比電路仿真器所需的FPGA表格縮減技術
(On Table Reduction for WDF based Analog Circuit Emulation on FPGA)
相關論文
★ 用於類比電路仿真之波動數位濾波器架構的自動建構方法★ 使用波動數位濾波器與非線性MOS模型的類比電路模擬平台
★ 實現波動數位濾波器架構下之類比仿真器的非線性電晶體模型★ 以節點保留方式進行壓降分析中電源網路模型化簡的方法
★ 以引導式二階權重提取改進辨認二階臨界函數之 研究★ 用於類比電路仿真器的 波動數位濾波器架構之定點數實現方法
★ 以基本類比電路架構為基礎的佈局自動化 工具★ 可保留設計風格及繞線行為之類比佈局遷移技術
★ 自動辨識混合訊號電路中數位區塊之方法★ 運用於記憶體內運算的SRAM功率模型之研究
★ 考量可繞度及淺溝槽隔離效應之類比佈局擺置微調方法★ 一個適用於量化深度神經網路且可調整精確度的處理單元設計: 一種階層式的設計方法
★ 一個有效的邊緣智慧運算加速器設計: 一種適用於深度可分卷積的可重組式架構★ 實現類比電路仿真的波動數位濾波器架構生成與模擬
★ 用於類比電路仿真器的波動數位濾波器之硬體最佳化方法★ 自動辨識混合訊號電路中構成區塊及RLC元件之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著製程進步,目前的超大型積體電路設計愈來愈複雜,單晶片系統( System on Chip , SOC ) 逐漸成為設計主流,由於系統通常同時包含數位電路與類比電路,因此類比/混合訊號(Analog/mixed-signal, AMS)電路的驗證在開發晶片的流程中變的格外重要。在這篇論文中,我們採用波動數位濾波器(Wave Digital Filter, WDF),將類比電路轉換至對應的數位電路來進行仿真。此方法使用入射波與反射波的方式描述電路特性,可以將每個類比元件對應至波動數位濾波器架構的數位元件,達成與數位電路一起模擬的目標。
本研究根據WDF架構仿真流程之相關文獻,利用小訊號模型將三端的非線性元件拆解成數個雙端元件,本論文以查表的方式替換主動元件中非線性之效應,發現將切割表格的刻度縮小後會增加許多表格的容量。且為了在精準度及硬體成本之間權衡,必須對表格進行數學上的縮減。由實驗結果得知,在節省後的表格與原先表格的比較中,縮減的硬體最少可達99.97%。本研究也修改先前文獻的硬體架構,不需要在FPGA中軟體與硬體間的溝通。利用這兩點的改善;在硬體表現上,可達到20倍的加速,FPGA硬體的使用量與先前的研究也降低90%,由此可看出縮減表格對於波動數位濾波器的硬體仿真上的成效。
摘要(英) With the advance of process technologies, the design of Very-Large-Scale Integration (VLSI) circuits is becoming more complex. System on Chip (SOC) has become one possible option of VLSI design. Because SOC designs usually contain both analog and digital circuits, it is important to have an Analog/Mixed-Signal (AMS) verification flow for chip development. In this thesis, we adopt Wave Digital Filter theory to map analog circuits into digital circuits for emulating analog circuits. This method uses incident and reflected waves to model circuit characteristics. Each analog component can be transformed into corresponding digital component in WDF framework to support the co-simulation with digital circuits.
Based on the relevant research of WDF emulation process, this thesis utilizes the small signal model of three-terminal MOSFET, hybrid-pi model, to decompose it to several two-port elements. We use lookup table to replace the non-linear effect in active element, and discover that decrease the scale of table will increase the table size massively. Owing to compromise the accuracy and hardware cost of table, we have to reduce the capacity of table. From the experimental results, the capacity of table can be reduced by 99.97% after table reduction. In this thesis, we also modify the hardware architecture of previous literature, and does not require communication between the software and the hardware in FPGA. Take the advantage of these two improvements, we can have 20 times faster acceleration in hardware performance. Comparing to previous work, FPGA hardware usage is also reduced by 90%. It demonstrates that table reduction technique is very effective in implementating hardware emulation of the WDF.
關鍵字(中) ★ 數位波動濾波器
★ 表格縮減
★ 數位電路
關鍵字(英) ★ Wave Digital Filter
★ Table Reduction
★ digital circuit
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
1 第一章、緒論 1
1-1 前言 1
1-2 相關研究 3
1-2-1 場列式可程式類比陣列(FPAA) 3
1-2-2 可程式化類比元件陣列(PANDA) 5
1-3 論文結構 7
2 第二章、背景知識 8
2-1 數位濾波器(Digital Filter)模型 8
2-2 波動數位濾波器(Wave Digital Filter) 10
2-2-1 波動數位濾波器模型 10
2-2-2 配線器(Adaptor) 13
2-2-3 非線性半導體場效電晶體模型(MOSFET) 17
2-3 研究動機與問題定義 19
3 第三章、表格縮減技術與WDF硬體架構 21
3-1 WDF仿真器的仿真流程 21
3-2 縮減表格技術 23
3-3 WDF硬體架構與排程 34
3-3-1 串聯配線器硬體架構 35
3-3-2 並聯配線器硬體架構 37
3-3-3 WDF硬體排程 39
4 第四章、實驗結果 42
4-1 實驗環境 42
4-2 RLGC電路 43
4-3 P型金氧半場效電晶體(PMOS) 45
4-3-1 軟體模擬 45
4-3-2 硬體仿真 49
5 第五章、結論與未來工作項目 52
6 參考文獻 53
參考文獻 [1] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proceedings of the IEEE, Jan 1998.
[2] M. Vertregt, “The analog challenge of nanometer CMOS,” Int’l Electron Devices Meeting, pp.1-8, Dec. 2006
[3] Fettweis, “Wave digital filters: Theory and practice,” Proceedings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.
[4] K. Meerkotter and R. Scholz, “Digital simulation of nonlinear circuits by wave digital filter principles,” IEEE Int’l Symp. on Circuits and Systems, pp. 720–723, 1989.
[5] H. Kutuk and S.-M. Kang, “A field-programmable analog array (FPAA) using switched-capacitor techniques,” in Proc. IEEE Int’l Symp. on Circuits and Systems, vol. 4, 1996, pp. 41-44, 1996.
[6] E. K. Lee and W. L. Hui, “A novel switched-capacitor based field-programmable analog array architecture,” in Field-Programmable Analog Arrays, Springer, pp. 33-50, 1998.
[7] E. K. Lee and P. G. Gulak, “A transconductor-based field-programmable analog array,” in Proc. IEEE Int’l Solid-State Circuits Conf., pp. 198-199, 1995.
[8] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field programmable analog array for CMOS continuous-time OTA-C filter applications,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 125-136, 2002.
[9] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-scale field-programmable analog arrays for analog signal processing,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2298-2307, 2005.
[10] N. Suda & J. Suh & N. Hakim & Y. Cao & B. Bakkaloglu, “A 65 nm Programmable ANalog Device Array (PANDA) for Analog Circuit Emulation,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 181-190, Jan 2016.
[11] D. Franken & J. Ochs & K. Ochs, "Generation of Wave Digital Structures for Connection Networks Containing Ideal Transformers," in Proc. IEEE Int. Symp. Circuits and System, vol.1, pp. III-240-III-243, June, 2003.
[12] Y.-S. Han, “A simulation platform for analog circuits using wave digital filters and Nonlinear MOS model,” National Central University, Taiwan, 2015.
[13] H.-P. Yang, “Automatic Construction and Scheduling of the Wave Digital Filter Structures for Analog Emulators,” National Central University, Taiwan, 2016.
[14] C.-H. Wang, “Nonlinear Transistor Model for WDF-Based Analog Emulators,” National Central University, Taiwan, 2016.
[15] H.-P. Yang, H.-J. Hsu, C. Wang, C.-N. J. Liu, and J.-Y. Jou, “Automatic Netlist Transformation for WDF-Based Analog Emulator,” Workshop on Synthesis and System Integration of Mixed Information Technologies (SASIMI), Oct. 2016.
[16] L.-S. Liu, “Fixed-Point Implementation of Wave Digital Filters for Analog Circuit Emulation,” National Central University, Taiwan, 2017
[17] W. Wu, Y.-L. Chen, Y. Ma, C.-N. Liu, J.-Y. Jou, S. Pamarti, and L. He, “Wave Digital Filter based Analog Circuit Emulation on FPGA,” IEEE Int’l Symp. on Circuit and Systems, May 2016.
[18] M.-Y. Li, "Hardware Implementation of Analog Emulator Based on Wave Digital Filters," National Central University, Taiwan, 2017
[19] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “Bsim: Berkeley short-Channel IGFET model for MOS transistors,” IEEE J. Solid-State Circuits, vol. 22, no. 4, pp. 558–566, 1987.
[20] T. Shima, T. Sugawara, S. Moriyama, and H. Yamada, “Three-dimensional table look-up MOSFET model for precise circuit simulation,” IEEE J. Solid-State Circuits, vol. 17, no. 3, pp. 449-454, 1982.
[21] A. Sarti and G. D. Poli, “Toward Nonlinear Wave Digital Filters,” IEEE Trans. on Signal Processing, vol. 47, no. 6, pp. 1654-1668, 1999.
[22] Mathworks Document correlation coefficients, https://www.mathworks.com /help/matlab/ref/corrcoef.html
[23] R. J. Singh , J. V. McCanny, “A Wave Digital Filter Three-Port Adaptor with fine grained pipelining,” Application Specific Array Processors, 1991. Proceedings of the International Conference on, pp. 116 - 128, Sep. 1991.
[24] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill Higher Education, 2000.
[25] S. Y., Yeh, “Timing and Resource Optimization of Pipelined Analog Emulator Based on Wave Digital Filters,” National Central University, Taiwan, 2015.
指導教授 周景揚(Jing-Yang Jou) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明