博碩士論文 105521117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.144.39.2
姓名 吳可凡(Ke-Fan Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用鐵電可變電容與砷化鎵基晶片上電感之磁耦合全通相位偏移器
(A Magnetically Coupled All-Pass Phase Shifter Using Ferroelectric Varactors and GaAs-based On-Chip Inductors)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相位偏移器是相位陣列中關鍵的電路之一,其功能為提供可調的植入相位。在相位陣列應用中,相移器通常須可達360°的相移量。若可提高單級相移器之相移量,則可減少串接的級數,期能降低植入損耗與電路面積。本篇論文採用具磁耦合的全通網路來設計一操作於2.4 GHz類比式相移器,設計目標為單級網路便可達到180°相移量。
我們以本實驗室所開發的基於鈦酸鍶鋇薄膜的鐵電可變電容技術,並與穩懋半導體提供之積體被動元件製程(WIPD)以覆晶鍵合方式整合,來實現此磁耦合全通相位偏移器。磁耦合全通網路中的耦合電感是以WIPD製程實現於GaAs基板上。我們設計兩電感互繞的極性使其對應的耦合係數為正值,以提升相位偏移量。模擬結果顯示,於2.45 GHz下,耦合係數可達0.8;若可變電容之可調度可達2.3,則相移量可達191°。
相移器中的鐵電可變電容製作於藍寶石基板上;可變電容量測結果顯示,於10 V偏壓下,電容可調度可達到約2.3。我們把以WIPD製程製作的GaAs晶片覆晶鍵合於藍寶石載板上,以組裝完成所設計之相移器。量測結果顯示,於10 V偏壓下,在2.35 GHz達到161°最大相移量,返回損耗皆大於11.3 dB,植入損耗皆小於15.8 dB
由同載板上的測試電容量測結果可知鐵電可變電容之品質因子較模擬預期差,導致了較高的植入損耗。另外,我們推測,因為覆晶鍵合的溫度較高,導致鐵電薄膜特性改變,造成可調度下降,以致相移量未如預期可超過180°。不過量測得之相移量亦已達161°,成功驗證以磁耦合全通網路架構來可實現高相移量之相位偏移器。
摘要(英) Phase shifter is an essential component in a phased array. The function of a phase shifter is to provide a tunable insertion phase. In phased array applications, phase shift up to 360° is usually necessary. If the amount of phase shift provided by a single stage of phase shifter can be increased, the number of cascaded stages can then be reduced, which may lead to the reduction of insertion loss and circuit area. In this thesis, a 2.4-GHz analog phase shifter is designed at 2.4 GHz based on magnetically coupled all-pass network (MCAPN). The design goal is to achieve a phase shift up to 180° using only a single-stage network.
In this work, we use the ferroelectric varactor technology based on BSTO thin film developed by our lab and combine it with the integrated passive process offered by WIN Semiconductors (the WIPD process) by flip-chip bonding to realize the proposed magnetically coupled all-ass phase shifter. The coupled inductors in the MCAPN are realized using the WIPD process on a GaAs substrate. The polarity of the two intertwined inductors is designed to produce a positive coupling coefficient, which helps increase the amount of phase shift. Simulation results show that, at 2.45 GHz, a coupling coefficient of 0.8 can be achieved. If the tunability of the varactors is 2.3, the simulated phase shift is as high as 191°.
The ferroelectric varactors in the phase shifter are fabricated on a sapphire substrate. Measurement results of the varactors show that tunability of 2.3 is achieved under 10-V bias. The construction of the phase shifter is finalized by flip-chip mounting the GaAs chip onto the sapphire carrier. Measurement results of the phase shifter show that, under 10-V bias, maximum phase shift of 161° occurs at 2.35 GHz, with return loss greater than 11.3 dB and insertion loss less than 15.8 dB.
From the measurement results of the test varactors on the same carrier, it is found that the quality factor of the varactors is lower than what is used in the simulation, leading to the higher insertion loss. Moreover, we suspect that, the temperature for flip-chip bonding may be too high so that the characteristics of the ferroelectric thin film has changed, resulting in lowered tunability and thereby the reduced phase shift, which is less than 180°. Nevertheless, since the measured phase shift is as high as 161°, we successfully demonstrate that phase shifters with large amount of phase shift can be realized using MCPAN.
關鍵字(中) ★ 相位偏移器
★ 鐵電可變電容
★ 全通網路
關鍵字(英) ★ phase shifter
★ ferroelectric varactor
★ all-pass network
論文目次 國 立 中 央 大 學 I
摘要 VI
Abstract VII
誌謝 IX
目錄 XI
圖目錄 XII
表目錄 XIV
第一章 緒論 1
1–1 研究動機 1
1–2 文獻回顧 2
1–3 論文架構 4
第二章 理論分析與設計 5
2–1 簡介 5
2–2 全通網路 6
2–3 磁耦合全通網路架構之分析 9
2–4 單級類比式相位偏移器之設計分析 16
第三章 電路製作與量測結果 30
3–1 電路製程與製作 30
3–1–1 Metal1(電容下電極)製作流程 30
3–1–2 鐵電薄膜沉積 33
3–1–3 Metal2(電容上電極)製作流程 34
3–1–4 鐵電薄膜介電層製作流程 36
3–1–5 氮化矽保護層沉積與矽化鉻電阻製作流程 38
3–1–6 氮化矽保護層開洞製作流程 40
3–1–7 Metal3接腳層製作與電鍍流程 42
3–1–8 覆晶接合處電鍍與接腳層蝕刻 46
3–1–9 覆晶整合 49
3–2 量測結果 52
第四章 結論 66
參考文獻 68
附錄 72
相位偏移器製作流程 72
參考文獻 [1] C.-R. An, “Magnetically coupled all-pass phase shifters using a ferroelectric integrated passive device process,” Master dissertation, National Central University, 2018.
[2] H.-P. Huang, “Analog phase shifter based on magnetically coupled all-pass networks and ferroelectric varactors,” Master dissertation, National Central University, 2017.
[3] J.-J. Huang, “A broadband 4-bit CMOS phase shifter using magnetically coupled all-pass networks,” Master dissertation, National Central University, 2015.
[4] H.-Y. Li, “Analog and digital phase shifters based on all-pass networks,” Master dissertation, National Central University, 2014.
[5] A. S. Nagra and R. A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[6] N. S. Barker and G. M. Rebeiz, ”Optimization of distributed MEMS transmission-line phase shifters-U-band and W-band designs,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 11, pp. 1957–1966, Nov. 2000.
[7] F. Ellinger, H. Jackel and W. Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[8] A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3905–3915, Nov. 2013.
[9] B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck and R. A. York, “A new high performance phase shifter using Ba/subx/Sr/sub1-x/TiO3 thin films,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 7, pp. 237–239, July 2002.
[10] G. Velu, K. Blary, L. Burgnies, J. C. Carru, E. Delos, A. Marteau, and D. Lippens, “A 310°/3.6-dB K-band phaseshifter using paraelectric BST thin films,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 2, pp. 87–89, Feb. 2006.
[11] M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou, J. Binder, and R. Jakoby, “Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1265–1273, May 2011.
[12] M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou and R. Jakoby, “Compact tunable phase shifters on screen-printed BST for balanced phased arrays” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3331–3337, Dec. 2011.
[13] M. Haghzadeh, C. Armiento and A. Akyurtlu, “All-printed flexible microwaves varactors and phase shifters based on a tunable BST/polymer” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2030–2042, Jun. 2017.
[14] R. N. Hardin, E. J. Downey, and J. Munushian, “Electronically variable phase shifter utilizing variable capacitance diodes,” Proc. IRE (Correspondence), vol. 48, no. 5, pp. 944–945, May 1960.
[15] S. Lucyszyn and I. D. Robertson, “Decade bandwidth hybrid analogue phase shifter using MMIC reflection terminations,” Electron. Lett., vol. 28, no. 11, pp.1064–1065, May 1992.
[16] F. Ellinger, R. Vogt, and W. Bächtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 5, pp. 913–917, May 2001.
[17] D. Adler and R. Popovich, “Broadband switched-bit phase using all-pass networks,” IEEE MTT-S International Microwave Symposium Digest, July 1991, pp. 265–268.
[18] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, ” Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294–301, Jan. 2006.
[19] I. J. Bahl and D. Conway, “L- and S-band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 2, pp. 293–299, Feb. 2008.
[20] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki, and M. Miyazaki, “S- and C-band ultra-compact phase shifters based on all-pass network,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 41–47, Jan. 2010.
[21] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[22] Q. Xiao, “A compact L-band broadband 6-bit MMIC phase shifter with low phase error,” Proceedings of the 6th European Microwave Integrated Circuits Conference, Oct. 2011, pp. 410–413.
[23] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 55–57, Feb. 2012.
[24] D. Kim, Y. Choi, M. Ahn, M. G. Allen, J. S. Kenney and P. Marry, ”2.4 GHz continuously variable ferroelectric phase shifters using all-pass networks,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 434–436, Oct. 2003.
[25] L.-Y. V. Chen, R. Forse, A. H. Cardona, T. C. Watson, and R. York, “Compact analog phase shifters using thin-film (Ba,Sr)TiO3 varactors,” IEEE MTT-S International Microwave Symposium Digest, June 2007, pp. 667–670.
[26] Z. Zhao, X. Wang, K. Choi, C. Lugo, and A. T. Hunt, “Ferroelectric phase shifters at 20 and 30 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 2, pp. 430–437, Feb. 2007.
[27] H.-Y. Li, S.-C. Chen, and J.-S. Fu, “Ferroelectric thin-film integrated capacitor and its application in radio-frequency phase shifter design,” 2013 IEEE Electrical Design of Advanced Packaging and Systems Symposium, Nara, Japan, Dec. 2013.
[28] D. Mercier, A. Niembro-Martin, H. Sibuet, C. Baret, J. Chautagnat, C. Dieppedale, C. Bonnard, J. Guillaume, G. L. Rhun, C. Billard, P. Gardes, P. Poveda, “X Band Distributed Phase Shifter Based on Sol-Gel BCTZ Varactors” 2017 EuMC, Dec. 2017.
[29] M. aghzadeh, C. Armiento, A. Akyurtlu, “Fully printed varactor and phase shifters based on a BST/Polymer ink for tunable microwave applications” IEEE MTT-S International Microwave Symposium, Aug. 2016.
[30] M. Nikfalazar, A. Mehmood, M. Sohrabi, M. Mikolajek, A. Wiens, H. Maune, C. Kohler, J. R. Binder, and R. Jakoby, “Steerable dielectric resonator phased-array antenna based on inkjet-printed tunable phase shifter with BST metal-insulator-metal varactors” IEEE Antennas and Wireless Propagation Letters, vol. 15 , pp. 877–880, Sep. 2015.
[31] C.-T. Yu, “An integrated passive device process featuring ferroelectric varactors and its application in the fabrication of a microwave phase shifter,” Master dissertation, National Central University, 2015.
[32] T. -W. Ding, “Fabrication and measurement of ferroelectric varators with through substrate vias on silicon and chromium silicide thin-film resistors,” Master dissertation, National Central University, 2017.
[33] R. K. Waits, “Silicide resistors for integrated circuits,” Proc. IEEE, vol. 59, pp. 1425–1429, Oct. 1971.
[34] H. -Y. Li and J. -S. Fu, “Analysis of magnetically coupled all-pass network for phase-shifter design,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2025–2037, Sep. 2014.
[35] O. El-Gharniti, E. Kerhervé, and J.-B. Bégueret, “Modeling and characterization of on-chip transformers for silicon RFIC,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 607–615, Apr. 2007.
[36] S. B. Evseev, L. K. Nanver, “Surface-charge-layer sheet-resistance measurements for evaluation interface RF losses on high-resistivity-silicon substrates” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3542–3550, Nov. 2012.
[37] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[38] H. Zarei, S. Kodama, C. T. Charles, and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1647–1656, Aug. 2007.
[39] H. Zarei and D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, vol. 1, pp. 392–393.
[40] F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360 phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2019-3-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明