博碩士論文 105521126 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.223.210.20
姓名 謝宏顥(Hung-Hao Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點陣列嵌入奈米線連接金屬電極之熱二極體
(Heat diodes made of quantum dots embedded in nanowires connected to metallic electrodes)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 設計熱流二極體,對熱流的控制應用是非常重要的。然而,整個領域的進展非常有限。特別是,少有實驗的文獻在期刊刊出。雖然理論在相同課題有不少的報導,但是理論文獻所提出的系統及熱整流的機制,對實驗的建構是非常困難的。所以對實驗的幫助還是很有限,而多數的熱整流二極體都採用聲子為主要的熱流載子。本論文考慮電子為熱流整流的主要載子。量子點奈米線因可以大大增加聲子的散射,所以聲子熱流可以被壓抑。利用非均勻的量子點奈米線所形成的階梯能階,我們可以對電子熱流產生效能不錯的熱整流特性。相較其他的文獻所提出的設計,量子點奈米線或許是一個較容易建構的系統。
摘要(英) It is very important to design novel heat diodes in the control of heat currents. So far, few literatures have experimentally reported the heat rectification feature of such devices. Although some theoretical concepts considering phonon carriers to carry heat currents have been proposed to design heat diodes, these proposals are not easy to be implemented by experiments. This thesis considers the structure of quantum dot superlattice nanowires with staircase energy levels and theoretically demonstrates that electron heat currents show a heat rectification behavior. To have a high efficient electron heat diode, phonon heat currents should be fully blocked.
關鍵字(中) ★ 熱二極體
★ 量子點
★ 奈米線
關鍵字(英)
論文目次 摘要 ………………………………………………………………………………………………………………………i
Abstract………………………………………………………………………………………………………………ii
目錄 ………………………………………………………………………………………………………………………iii
圖目錄………………………………………………………………………………………………………………………iv
第一章 、導論 …………………………………………………………………………………………………1
1-1 前言 ……………………………………………………………………………………………………………1
1-2 熱整流的簡介 ……………………………………………………………………………………………2
1-3 熱二極體的介紹與發展 ………………………………………………………………………3
第二章 、系統 模型 ……………………………………………………………………………………5
2-1熱二極體系統 熱二極體系統 熱二極體系統 ……………………………5
2-2電子系統總能 ………………………………………………………………………………………………6
2-3電子流 與熱…………………………………………………………………………………………………7
2-4電子傳輸係數 ……………………………………………………………………………………………9
2-5 聲子熱流 ……………………………………………………………………………………………………11
第三章 、熱二極體系統的特性與分析 熱二極體系統的特性與分析 ………………………………………………………………………13
3-1 電子庫倫交互作用力對熱二極體之影響 …………………………………………13
3-2 溫差對熱電壓之影響 ………………………………………………………………………………15
3-3 系統平均溫度改變對熱電壓之影響 ……………………………………………………16
3-4 系統平 均溫度改變對電子熱流與整係數之影響 ……………………………20
3-5 能階差改變對電子熱流與整係數之影響 …………………………………………22
3-6 溫差改變對電子熱流與整係數之影響 ………………………………………………23
3-7 聲子熱流對系統的影響 ……………………………………………………………………………25
第四章 第四章 、結論 ………………………………………………………………………………………28
參考文獻………………………………………………………………………………………………………………29
參考文獻 [1] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
[2] M. Terraneo, M. Peyrard, and G. Casati, “Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier”, Phys. Rev. Lett. 88, 094302 (2002).
[3] Baowen Li, L. Wang and G. Casati, “Thermal Diode: Rectification of Heat Flux”, Phys. Rev. Lett. 93, 184301 (2004).
[4] B. Hu, L. Yang and Y. Zhang, “Asymmetric Heat Conduction in Nonlinear Lattices”, Phys. Rev. Lett. 97, 124302 (2006).
[5] G. Casati, C. Mejia-Monasterio and T. Prosen, “Magnetically Induced Thermal Rectification”, Phys. Rev. Lett. 98, 104302 (2007).
[6] N. Zeng and J. S. Wang, “Mechanisms causing thermal rectification: The influence of phonon frequency, asymmetry, and nonlinear interactions”, Phys. Rev. B 78, 024305 (2008).
[7] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ Sci. 2, 466 (2009).
[8] M. Terraneo, M. Peyrard, and G. Casati, “Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier”, Phys. Rev. Lett. 88, 094302 (2002).
[9] B. W. Li, J. H. Lan, and L. Wang, “Interface Thermal Resistance between Dissimilar Anharmonic Lattices”, Phys. Rev. Lett. 95, 104302 (2005).
[10] D. Segal and A. Nitzan, “Spin-Boson Thermal Rectifier”, Phys. Rev. Lett. 94, 034301 (2005).
[11] J. H. Lan and B. W. Li, “Thermal rectifying effect in two-dimensional anharmonic lattices”, Phys. Rev. B 74, 214305 (2006).
[12] G. Casati, C. Mejia-Monasterio, and T. Prosen, “Magnetically Induced Thermal Rectification”, Phys. Rev. Lett. 98, 104302 (2007).
[13] Y. Wang, A. Vallabhaneni, J. N. Hu, B. Qiu, Y. P. Chen, and X. L. Ruan, “Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures”, Nano Lett. 14, 592 (2014).
[14] S. Pal and I. K. Puri, “Thermal rectification in a polymer-functionalized single-wall carbon nanotube”, Nanotechnology 25, 8 (2014).
[15] X. Cartoixa, L. Colombo, and R. Rurali, “Thermal Rectification by Design in Telescopic Si Nanowires”, Nano Lett. 15, 8255 (2015).
[16] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, “Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes”, Phys. Rev. Lett. 115, 195503 (2015).
[17] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, “Detecting thermal rectification”, AIP ADVANCES 6, 121901 (2016).
[18] C. R. Otey, W. T. Lau, and S. H. Fan, “Thermal Rectification through Vacuum”, Phys. Rev. Lett. 104, 154301 (2010).
[19] D. M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[20] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88, 143501 (2006).
[21] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
[22] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
[23] T. Takeuchi, “Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals”, Sci. Technol. Adv. Mater. 15, 064801 (2014).

[24] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto, “Rectification of electronic heat current by a hybrid thermal diode”, Nature Nanotech. 10, 303-307 (2015).
[25] R. Scheibner, M. Konig, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, “Quantum dot as thermal rectifier”, New J. Phys. 10, 083016 (2008).
[26] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide”, Appl. Phys. Lett. 105, 253503 (2014).
[27] J. Zhu, K. Hippalgaonkar, S. Shen, K. V. Wang, Y. Abate, S. Lee, J. Q. Wu, X. B. Yin, A. Majumdar, and X. Zhang, “Temperature-Gated Thermal Rectifier for Active Heat Flow Control”, Nano Lett. 14, 4867-4872 (2014).
[28] Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay and C. Dames, “A photon thermal diode”, Nat. Commu. 5, 5446 (2014).
[29] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors”, (Springer, Heidelberg, 1996).
[30] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett. 68, 2512 (1992).
[31] K. Yamamoto and N. Hatano, “Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime”, Phys. Rev. E 92, 042165 (2015).
[32] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008).
[33] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
[34] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487 (2012).
[35] D. M. T. Kuo, C. C. Chen, and Y. C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”, Phys. Rev. B 95, 075432 (2017).
[36] D. M. T. Kuo and Y. C. Chang, “Thermoelectric properties of a quantum dot array connected to metallic electrodes”, Nanotechnology 24, 175403 (2013).
[37] J. H. Lee, J. W. Lim, and P. D. Yang, “Ballistic Phonon Transport in Holey Silicon”, Nano Lett 15, 3273 (2015).
[38] T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee and C. W. Chang, “Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires”, Nature nanotech 8, 534 (2013).
[39] T. Zhu and E. Ertekin, “Phonon transport on two-dimensional graphene/boron nitride superlattices”, Phys. Rev. B 90, 195209 (2014).
[40] T. Zhu and E. Ertekin, “Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials”, Phys. Rev. B 93, 155414 (2016).
[41] T. Zhu and E. Ertekin, “Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene”, Nano Lett. 16, 4763 (2016).
[42] E. B. Ramayya, L. N. Maurer, A. H. Davoody and I. Knezevic, “Thermoelectric properties of ultrathin silicon nanowires”, Phys. Rev. B 86, 115328 (2012).
指導教授 郭明庭 審核日期 2018-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明