博碩士論文 105522002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.118.16.91
姓名 郭庭榕(Ting-Rung Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 抗微生物?及其功能類型辨識系統
(Identification of anti-microbial peptides and their functional types)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於抗生素的濫用,導致微生物的抗藥性迅速增加,使得較不易產生抗藥性的抗菌?在治療醫學中的角色日趨重要。抗菌?是先天性免疫系統的重要組成部分,且廣泛出現在大多數的生物體上。此外抗菌?具有廣泛的抗菌活性,如對抗病毒、寄生蟲、細菌與真菌等等。然而針對同時區分抗菌?多種功能類型的文獻較為缺乏,甚至鮮少研究進一步分析其相關特徵之重要性。因此本研究基於兩階段架構建立八個分類器辨識抗菌?及其功能類型,並使用前向選擇演算法尋找重要特徵,其中,第一階段的抗菌?分類器於測試集的曲面下面積為0.9894;第二階段的抗寄生蟲、抗病毒、抗癌症、哺乳動物細胞、抗真菌、抗革蘭氏陽細菌以及抗革蘭氏陰細菌分類器在獨立測試集的曲面下面積分別為0.7474、0.9397、0.8150、0.8515、0.8533、0.8725及0.8576。此外我們發現第一殘基的疏水性、正規化的范德瓦爾斯體積、極性、極化率、電荷、二級結構以及可溶性是分辨抗菌?與非抗菌?的重要特徵。除上述提到七種物理化學性質外,偽胺基酸組成亦為區分抗菌?的之不同類型的重要的特徵。最後我們建構一個網站,提供?序列之抗菌?及其功能類型預測。
摘要(英) Owing to the abuse of antibiotics, the infection resistance of microbial pathogens against chemical antibiotics increases rapidly. Antimicrobial peptides (AMPs) are essential components of the innate immune system with the lower possibility on the emergence of resistance and produced by virtually all organisms known on earth, hence become the attractive candidates for development as therapeutics. AMPs are able to resist various pathogenic microorganisms, such as viruses, parasites, bacteria, and fungi. However, little research dedicates to differentiate the multiple functional types of AMPs simultaneously or even analyze those features that may highly related to distinguish them. In this study, we construct 8 classifiers under two-stage framework to identify the AMPs with their functional types. Moreover, we adopted forward selection strategy to find some important features that may associate with the functional types of AMPs. In the first stage, the resulting area under curves (AUC) of AMP classifier is 0.9894 on the testing set. In the second stage, the AUCs of parasitic, viral, cancer, mammalian, fungal, gram-positive bacterial and gram-negative bacterial are 0.7474, 0.9397, 0.8150, 0.8515, 0.8533, 0.8725 and 0.8576 on the independent testing set, respectably. Besides, we found that hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, secondary structure and solvent accessibility in the first residue were important patterns to identify AMPs and non-AMPs. In addition to these seven properties, pseudo amino acid composition was also the important factors to distinguish different functional types of AMPs. We developed a web-server called AMPfun to provide our classifiers for AMP and their functional types prediction.
關鍵字(中) ★ 微生物
★ 生物資訊
★ 機器學習
關鍵字(英) ★ microbial
★ bioinformatics
★ machine-learning
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1. Introduction 1
1.1. Background 1
1.2. Related Works 3
1.3. Motivation 5
1.4. Goal 5
Chapter 2. Materials and Methods 6
2.1. Collection and Preprocessing of Dataset 6
2.2. Features Extraction 11
2.2.1. N-gram Detection 11
2.2.2. Motif Discovery 12
2.2.3. Binary Profiling of Positional Features 13
2.2.4. Composition of Various Features 13
2.2.5. Features Encoding by Physical-Chemical Properties 14
2.2.6. Forward Feature Selection Algorithm 15
2.3. Construction of Predictive Models 15
2.3.1. Decision Tree 16
2.3.2. Random Forest 17
2.3.3. Support Vector Machine 21
2.4. Evaluation Metrics 22
2.5. Implementation of Web-Based Prediction Tool 24
Chapter 3. Results 26
3.1. Sequence-Based Characterization AMPs 26
3.2. Performance of Classification between AMPs and non-AMPs 28
3.3. Sequence-Based Characterization Seven Functional Types of AMPs 32
3.4. Performance of Identifying AMPs and Their Functional Types 33
3.5. Comparison with Existing Tools 42
Chapter 4. Discussions and Conclusion 43
4.1. Discussions 43
4.2. Conclusion 47
References 49
參考文獻 1. Ventola, C.L., The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics, 2015. 40(4): p. 277.
2. Harder, J. and J.-M. Schroder, Antimicrobial peptides: role in human health and disease. 2015: Springer.
3. De la Fuente-nunez, C., et al., Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacology & therapeutics, 2017. 178: p. 132-140.
4. Bahar, A.A. and D. Ren, Antimicrobial peptides. Pharmaceuticals, 2013. 6(12): p. 1543-1575.
5. Zhang, L.-J. and R.L. Gallo, Antimicrobial peptides. Current Biology, 2016. 26(1): p. R14-R19.
6. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clinical microbiology reviews, 2006. 19(3): p. 491-511.
7. Silva, O., et al., An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Scientific reports, 2016. 6: p. 35465.
8. Anunthawan, T., et al., Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2015. 1848(6): p. 1352-1358.
9. Haney, E.F., et al., High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides, 2015. 71: p. 276-285.
10. Bhadra, P., et al., AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Scientific reports, 2018. 8(1): p. 1697.
11. Chang, K.Y., et al., Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields. PloS one, 2015. 10(3): p. e0119490.
12. Wang, G., X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, 2015. 44(D1): p. D1087-D1093.
13. Waghu, F.H., et al., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic acids research, 2015. 44(D1): p. D1094-D1097.
14. Lee, H.-T., et al., A large-scale structural classification of antimicrobial peptides. BioMed research international, 2015. 2015.
15. Meher, P.K., et al., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific reports, 2017. 7: p. 42362.
16. Thomas, S., et al., CAMP: a useful resource for research on antimicrobial peptides. Nucleic acids research, 2009. 38(suppl_1): p. D774-D780.
17. Fan, L., et al., DRAMP: a comprehensive data repository of antimicrobial peptides. Scientific reports, 2016. 6: p. 24482.
18. Qureshi, A., et al., AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic acids research, 2013. 42(D1): p. D1147-D1153.
19. Tyagi, A., et al., CancerPPD: a database of anticancer peptides and proteins. Nucleic acids research, 2014. 43(D1): p. D837-D843.
20. Mehta, D., et al., ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database, 2014. 2014: p. bau051.
21. Thakur, N., A. Qureshi, and M. Kumar, AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic acids research, 2012. 40(W1): p. W199-W204.
22. Manavalan, B., et al., MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget, 2017. 8(44): p. 77121.
23. Agrawal, P., et al., In silico approach for prediction of antifungal peptides. Frontiers in microbiology, 2018. 9: p. 323.
24. Xiao, X., et al., iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical biochemistry, 2013. 436(2): p. 168-177.
25. Lin, W. and D. Xu, Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics, 2016. 32(24): p. 3745-3752.
26. Chen, W., et al., iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016. 7(13): p. 16895.
27. Lata, S., N.K. Mishra, and G.P. Raghava, AntiBP2: improved version of antibacterial peptide prediction. BMC bioinformatics, 2010. 11(1): p. S19.
28. Tyagi, A., et al., In silico models for designing and discovering novel anticancer peptides. Scientific reports, 2013. 3: p. 2984.
29. Consortium, U., UniProt: the universal protein knowledgebase. Nucleic acids research, 2016. 45(D1): p. D158-D169.
30. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-1659.
31. Vens, C., M.-N. Rosso, and E.G. Danchin, Identifying discriminative classification-based motifs in biological sequences. Bioinformatics, 2011. 27(9): p. 1231-1238.
32. Cao, D.-S., Q.-S. Xu, and Y.-Z. Liang, propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013. 29(7): p. 960-962.
33. Chou, K.C., Prediction of protein cellular attributes using pseudo?amino acid composition. Proteins: Structure, Function, and Bioinformatics, 2001. 43(3): p. 246-255.
34. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine learning research, 2011. 12(Oct): p. 2825-2830.
35. Han, J., J. Pei, and M. Kamber, Data mining: concepts and techniques. 2011: Elsevier.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明