博碩士論文 105522009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:54.161.100.24
姓名 黃競霆(Chiing-Ting Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在邊緣運算中基於微服務的資源管理之研究
(Study of Service Resource Management in Edge Computing Based on Microservice)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 現今雲端運算越來越成熟,但隨著5G的到來帶動了IOT的網路通訊設備的增加還有智慧型手機的普及,這些訊務量將會湧入核心網路,造成核心網路的壅塞,所以網路服務商會尋求邊緣網路將計算資源與服務功能下放到邊緣網路,並將低延遲的封包送到邊緣網路來卸載核心網路的負載量。但邊緣網路的資源相較雲端來說有限,所以在部署服務時需要考量資源控管的問題,這裡利用了微服務自主化且低耦合的特性,有了自主化的特性且透過完整成熟的RestAPI就可以直接與其他微服務溝通就不需要花時間等待向集中管理controller的回應,再加上其低耦合的特性,當某個服務負載量大時可以只擴展該服務不需要將整個程式擴展減少資源的占用,故因為這兩個特性可以解決時間敏感且資源有限的低延遲邊緣網路部署問題。基於微服務的特性我們會建立一個微服務部署平台,提供服務功能的部署。本論文也提出基於模糊理論的微服務與Hypervisor的分流偵測機制(Fuzzy-based Service Offloading Detection Mechanism, FSODM),此機制可以提供微服務還有Hypervisor一個快速且資源使用效率高的自動擴展的資源管理解決方案。
摘要(英) Nowadays, the technology of cloud computing is getting mature. However, with the 5G standard coming, it make the increase of IoT devices and mobile devices more widespread. These traffic will flood into core network, which makes the congestion of core network. Therefore, in order to offload the traffic from core network to edge network, the service providers will deploy their computing resources and services to the edge network, which makes packet low-latency transmitted to the edge network. The resource of edge network is fewer than the resource of cloud computing, it need to consider the problem of use the characteristics of low-couple and autonomy in microservice. With mature RestAPI, we can direct to communicate with other microservice without spending time to wait the response of controller. With the characteristics of low-couple, we can just auto-scale the service to reduce the consumption of resource when the loading of some service get instance. Therefore, with these two characteristics, we can solve the problem of deployment for time-sensitive and constraint of resource. Based on the characteristics of microservice, we proposed a microservice platform and provide the deployment of service. We also proposed a FSODM algorithm which provides a rapid and high resource efficiency auto-scaling resource management solution.
關鍵字(中) ★ 自動擴展
★ 邊緣網路
★ 微服務
★ 資源管理
關鍵字(英) ★ Auto-Scaling
★ Edge Computing
★ Microservice
★ Resource Management
論文目次 第一章 緒論 1
1.1 概要 1
1.2 研究動機 2
1.3 研究目的 3
1.4 章節架構 3
第二章 背景知識與相關研究 4
2.1 Monolithic與Micro-service技術 4
2.1.1 Monolithic 技術 5
2.1.2 Microservice 技術 6
2.1.3 Monolithic與Micro-service比較 8
2.2 Microservice的管理技術 8
2.2.1 Kubernetes(k8s) 9
2.3 Auto-Scaling 11
2.3.1 擴展: 12
2.3.2 垂直擴展 12
2.3.3 水平擴展 14
2.4 模糊理論 14
2.4.1 模糊化(Fuzzification) 15
2.4.2 模糊資料庫及模糊推論引擎 17
2.4.3 解模糊化 16
2.5 相關研究比較 17
第三章 研究方法 21
3.1 系統平台 21
3.1.1 微服務平台架構與設計 21
3.1.2 Controller 模組 25
3.1.3 Status Collector 模組 26
3.1.4 fuzzySystem模組 27
3.1.5 Deploy model 模組 27
3.2 系統運作流程與機制 27
3.2.1 系統定義與假設 28
3.2.2 資料符號表 29
3.2.3 Service detection 機制 31
3.2.4 Node adjustment 機制 35
3.2.5 演算法 37
3.2.6 系統運作流程 42
第四章 實驗與討論 45
4.1 實驗平台 45
4.2 微服務管理平台測試 47
4.2.1 實驗1-單一微服務開啟時間測試 47
4.2.2 實驗2–微服務的擴展時間 48
4.2.3 實驗3–微服務效能測試 49
4.2.4 實驗4-微服務與節點的效能監控 54
4.3 FSODM的功能檢測 57
4.3.1 實驗5- IPtable驗證 58
4.3.2 實驗6-微服務的水平擴展的驗證 58
4.3.3 實驗7–節點的垂直擴展的驗證 59
4.4 不同Auto-Scaling的比較 60
4.4.1 實驗8-微服務基於FSODM的分析 63
第五章 結論與未來研究 64
5.1 結論 64
5.2 未來的研究 64
參考文獻 66
參考文獻 [1] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric Computing: Vision and Challenges,” SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–42, 2015
[2] Richard Cziva and Dimitrios P. Pezaros, “Container Network Functions: Bringing NFV to the Network Edge”, IEEE Communications Magazine, 2017
[3] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J. Torres, and E. Ayguade, “Resource-aware Adaptive Scheduling ’ for Mapreduce Clusters,” in ACM/IFIP/USENIX International Conference on Middleware, 2011, pp. 187–207.
[4] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and Research Challenges,” Journal of Network and Systems Management, vol. 23, no. 3, pp. 567–619, 2015.
[5] Microservice.io, Available: http://microservices.io/
[6] Tarik Taleb andBadr Mada” On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration” SURVEYS & TUTORIALS.
[7] The microservice platform, Available: https://blog.gigaspaces.com/need-new-breed-hybrid-microservices-platform/
[8] Monolithic applications, Available: https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-container-applications/
[9] Microservice Architecture, Available:https://vironit.com/what-is-microservices-architecture/
[10] S. Newman, Building Microservices- Designing Fine-Grained Systems. O′Reilly Media, 2015
[11] Google Kubernetes[EB/OL]. http://kubernetes.io/
[12] Github Available:https://github.com/
[13] cAdvisor , Available : https://github.com/google/cadvisor
[14]Kubenetes Architecture, Available:http://www.gqpartners.com/kubernetes-the-final-frontier
[15] B. Wilder, Cloud Architecture Patterns, 1 ed.: O′Reilly Media, 2012.
[16] J. von Rickenbach, F. Lucci, P. D. Eggenschwiler, and D. Poulikakos, "Pore scale modeling of cold-start emissions in foam based catalytic reactors," Chemical Engineering Science, vol. 138, pp. 446-456, Dec 22 2015.
[17] Netflix Inc., ′Auto Scaling in the Amazon Cloud ′, 2016. [Online]. Available: http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-cloud.html. [Accessed: 02- Jun - 2016]
[18] Amazon Web Services Inc., ′Amazon CloudWatch′, 2016. [Online]. Available: https://aws.amazon.com/cloudwatch/?nc1=h_ls. [Accessed: 05- Jun- 2016].
[19] D. M. Gabbay, Classical vs Non-classical Logics -- The Universality of Classical Logic, 2 ed.: Oxford University Press, Inc. New York, NY, USA, 1993.
[20] L. A. Zadeh, "Fuzzy sets.," Information and Control, vol. 8, pp. 338-535
[21] Yu Jin-Gang1, 2, Zhai Ya-Rong1, 2*, Yu Bo1 , Li Shu3” Research and Application of Auto-scaling Unified Communication Server Based”, 10th International Conference on Intelligent Computation Technology and Automation, 2015
[22] Nan Wang, Blesson Varghese, Michail Matthaiou and Dimitrios S. Nikolopoulos” ENORM: A Framework For Edge NOde Resource Management", IEEE TRANSACTIONS ON SERVICES COMPUTING
[23]RestAPI Available:https://zh.wikipedia.org/wiki/%E8%A1%A8%E7%8E%B0%E5%B1%82%E7%8A%B6%E6%80%81%E8%BD%AC%E6%8D%A2
[24] kube-proxy Available:https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
[25] kubectl API.io, Available : https://kubernetes.io/docs/concepts/overview/kubernetes-api/
[26] Prometheus Available: https://github.com/prometheus
[27] Kubeadm Available: https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
[28] graceful termination, Available: https://github.com/RisingStack/kubernetes-graceful-shutdown-example
[29] flannel Available : https://github.com/coreos/flannel
[30] CNI Available: https://github.com/containernetworking/cni
[31] VXLan Overlay Available:https://www.juniper.net/documentation/en_US/junos-space-apps/network-director3.2/topics/concept/vxlan-evpn-overlay-understanding.html
[32] VXLAN package Architecture, Available : http://chansblog.com/5-vxlan-logical-switch-deployment/
[33] Iperf3, Available: https://iperf.fr/iperf-download.php
[34] Grafana, Availble : https://grafana.com/
[35] JMeter , Available: https://jmeter.apache.org/download_jmeter.cgi
指導教授 周立德(Li-Der Chou) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明