博碩士論文 105522017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.15.195.140
姓名 陳韋儒(Wei-Ru Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於注意力機制長短期記憶深度學習 之機器剩餘可用壽命預估
(Attention-based Long Short-Term Memory Deep Learning for Estimating Machinery Remaining Useful Life)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 受到德國工業4.0概念的影響,各大製造業為了保有競爭力,紛紛往「智慧化」生產的腳步邁進。利用產線的互聯網化,收集大量數據,再透過數據分析,達到自動調整生產流程、能源管理智慧化、預測需求以降低庫存及預測機械故障等目標、進而以最有效率的方式製造彈性乃至即時的客製化產品。本篇論文著重於預測機器剩餘可用壽命(Remaining Useful Life, RUL),屬於機器預診斷的一環,是一種新的維運策略思維,透過生產製造過程中所產生的巨量資料進行分析,再進行分析預測,以利提前替換或維修,避免設備在運作的過程中突然停止,導致生命或財產的損失。
本篇論文利用遞歸神經網路(Recurrent Neural Network, RNN)深度學習(Deep Learning)方法,預估機器的剩餘可用壽命。並利用長短期記憶(Long Short-Term Memory, LSTM)模型,再加入基於注意力機制,對特別導致損壞的因子進行加權,使其更能萃取時間序列資料的特徵,達到精確預測機器的剩餘可用壽命。
我們以NASA所提供的C-MAPSS(Commercial Modular Aero-Propulsion System Simulation)資料集為實驗案例,以所提的方法預估飛機渦輪引擎的剩餘壽命,並以參考文獻中的各種方法如MLP、SVR、RVR和CNN、Stack LSTM為比較對象。實驗顯示,在均方根差(Root Mean Squared Error, RMSE)或是資料集本身定義的Scoring Function的評分準則下,所提的方法有最佳的預測能力。
摘要(英) Influenced by the revolutionary concept of German Industry 4.0, major manufacturing industries have been moving from automatic production into smart production for maintaining their competitiveness. Industry 4.0 advocates smart factories that use Internet-enabled assembly lines to collect large amounts of data and then through data analysis to achieve the goals of smartly adjusting production processes, intelligently saving energy, precisely forecasting customer demands, and accurately predicting mechanical failures. In general, smart factories can yield flexible and even customized products in the most efficient way. This paper focuses on estimating machine remaining useful life (RUL), which is a kind of the machine condition pre-diagnosis. By accurate RUL estimation, we can perform predictive maintenance, instead of preventive maintenance, to avoid sudden breakdown of machines/components during the operation process to prevent huge loss.

This paper proposes a Recurrent Neural Network (RNN) deep learning method to estimate the remaining useful life of machines, especially the aero-propulsion engines. The proposed method uses the Long Short-Term Memory (LSTM) model with the attention-based (AB) mechanism. The LSTM model is useful for extracting relationship between time-series data items that are far separated, and the AB mechanism can help emphasize different factors that affect the RUL in different time. The NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset is taken to evaluate the URL estimation accuracy of the propose method. The evaluated results are compared with those of related methods, namely the MLP, SVR, RVR, CNN, Stack LSTM methods. Comparisons show that the proposed method is superior to the others in terms of the scoring function value defined by the C-MAPSS dataset, and the Root Mean Squared Error (RMSE) .
關鍵字(中) ★ 智慧工廠
★ 剩餘可用壽命
★ 深度學習
★ 遞歸神經網路
★ 長短期記憶
★ 注意力機制
關鍵字(英) ★ Smart Factory
★ Remaining Useful Life
★ Deep Learning
★ Recurrent Neural Network
★ Long Short Term Memory
★ Attention-based Mechanism
論文目次 中文摘要 I
Abstract II
目錄 IV
圖目錄 V
表目錄 VI
一、緒論 1
1-1研究背景與動機 1
1-2研究目的與貢獻 2
1-3論文架構 2
二、背景知識 3
2-1神經網路(Artificial Neural Network, ANN) 3
2-1-1神經網路簡介 3
2-1-2神經網路的架構 4
2-1-3神經網路的學習方式 5
2-1-4倒傳遞學習演算法(Back-Propagation Algorithm) 6
2-2深度學習(Deep Learning) 8
2-2-1深度學習簡介 8
2-2-2遞歸神經網路(Recurrent Neural Network, RNN) 9
2-2-3長短期記憶(Long Short-Term Memory, LSTM) 10
2-2-4注意力機制(Attention Mechanism) 13
三、問題定義與研究 16
3-1問題定義 16
3-2文獻研究 19
四、研究方法 21
4-1資料前處理 21
4-1-1標籤定義 21
4-1-2資料標準化 22
4-2網路架構 24
五、實驗與分析 28
5-1實驗環境 28
5-2實驗結果 28
六、結論與未來展望 35
參考文獻 36
參考文獻 [1] Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In Object oriented real-time distributed computing (isorc), 2008 11th ieee international symposium on (pp. 363-369). IEEE.
[2] Mitchell, Tom M. "Machine learning. 1997." Burr Ridge, IL: McGraw Hill 45.37 (1997): 870-877.
[3] Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65.6 (1958): 386.
[4] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." nature323.6088 (1986): 533.
[5] Understanding LSTM Networks:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[6] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.
[7] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International Conference on Machine Learning. 2015.
[8] Saxena, Abhinav, et al. "Damage propagation modeling for aircraft engine run-to-failure simulation." Prognostics and Health Management, 2008. PHM 2008. International Conference on. IEEE, 2008.
[9] Wang, P., Youn, B.D., Hu, C., “A generic probabilistic framework for structural health prognostics and uncertainty management”, Mech. Syst. Sig. Process. 28,
622–637 (2012).
[10] T. Wang, J. Yu, D. Siegel, J. Lee, “A similarity-based prognostics approach for remaining useful life estimation of engineered systems”, in: Proceedings of the IEEE International Conference on Prognostics and Health Management(2008).
[11] Babu, Giduthuri Sateesh, Peilin Zhao, and Xiao-Li Li. "Deep convolutional neural network based regression approach for estimation of remaining useful life." International conference on database systems for advanced applications. Springer, Cham, 2016.
[12] Chang, C.C., Lin, C.J., “LIBSVM: a library for support vector machines”, ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011).
[13] Tipping, M.E., “The relevance vector machine”, in Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 652–658. MIT Press, Cambridge (2000).
[14] Che-Sheng Hsu and Jehn-Ruey Jiang, "Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning," IEEE International Conference on Applied System Innovation 2018 (IEEE ICASI 2018), 2018.
[15] Heimes, Felix O. "Recurrent neural networks for remaining useful life estimation." Prognostics and Health Management, 2008. PHM 2008. International Conference on. IEEE, 2008.
[16] Bengio, Yoshua. "Practical recommendations for gradient-based training of deep architectures." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 437-478.
[17] Neural Networks for Machine Learning: https://zh-tw.coursera.org/learn/neural-networks.
[18] Duchi, J., Hazan, E., & Singer, Y., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”, Journal of Machine Learning Research, 12, 2121–2159, 2011
[19] Opitz, David W., and Richard Maclin. "Popular ensemble methods: An empirical study." J. Artif. Intell. Res.(JAIR) 11 (1999): 169-198.
[20] Keras Documentation: https://keras.io/.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2018-6-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明