博碩士論文 105522021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.15.34.131
姓名 王紹宇(Shao-Yu Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用場域對抗式類神經網路預測學生程式碼缺陷與程式碼缺陷與程式編寫風格之間的關聯
(Apply DANN to identify students′ code defects and their relationship with coding style)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年程式設計能力逐漸成為教育界發展重點,然而程式語言結合運算思維及編程操作,高入門門檻往往導致學生之間學習進度差異過大使教學困難,評估學生學習狀況成為程式語言教育的重要課題。在此結合線上編程系統、系統日誌過濾整合技術萃取學習參與度,提供學習行為參與度即時視覺化呈現,提供教學端面板進行學習行為監控。
對於作業繳交原始碼,以程式編寫風格評估以及程式碼缺陷預測模型進行程式碼品質分析,提供評量依據以及自我檢查的資訊。為了節省教學負擔,透過過去NASA MDP專案經驗中的資料集作為訓練資料,取代教學端逐一檢視程式碼並且給予是否存在缺陷之人工標記,以遷移式學習中的場域對抗式類神經網路(Domain-Adversarial Neural Network)技術建立程式碼缺陷模型,而結果顯示DANN的場域適應性較傳統機器學習好,DANN模型之proxy A-distance (PAD)數值為0.9,傳統機器學習方法之PAD則都大於1.8。
最後,研究程式編寫風格與程式碼缺陷的關聯;透過皮爾森相關係數檢測兩組特徵,發現其低關聯(小於0.25的對)比例近七成,而透過多元線性回歸分析,以兩組指標不同特徵(features)輸入模型訓練,建立程式編寫風格分數預測模型,程式編寫風格指標模型pMSE值為9.349,而程式碼缺陷指標pMSE為13.686,透過只有0.7的平均預測誤差發現雖然程式碼編寫風格與程式碼缺陷特徵間沒有直接關聯卻對於程式編寫風格分數有相近的預測能力。
摘要(英) In recent years, programming skill have gradually become the focus of education development in the education sector. However, programming combines computational thinking and coding operations. High learning thresholds often lead to difficult teaching due to the huge differences in student learning progress. Measure students’ learning becomes an important issue in programming education. We combination of online programming system, system log filter integration technology to extract learning participation, provide immediate visualization of learning behavior engagement to help teachers to monitor students’ learning behavior.
For assignment of the source code, code quality analyzes by coding style measure and code defects prediction model to provide evaluation and self-examination. In order to reduce the burden of teachers, we use NASA MDP project experience as a training data, instead of the teaching side to view lots pieces of code and give the artificial mark of whether the code is defect or not. And use Domain-Adversarial Neural Network to build code defects prediction model. The result shows that DANN′s domain adaptability is better than traditional machine learning. The DANN model’s proxy A-distance (PAD) value in 0.9, and traditional machine learning methods have a PAD greater than 1.8.
Finally, we study the relationship between coding style and code defects. We use Pearson correlation coefficient to find relationship of two sets. We found that its low correlation pairs (coefficient smaller than 0.25) is nearly 70%. After, we use different features and establish multiple linear regression to predict score of coding style model. The model build by coding style features’ pMSE value is 9.349, and the code defects features’ pMSE is 13.686. Through the average prediction error of only 0.7 difference, it is found that although there is no direct correlation between the coding style’s and the code defects’ feature, but two datasets have similar ability to predict score of coding style.
關鍵字(中) ★ 學習分析
★ 程式碼缺陷
★ 程式編寫風格
★ 場域對抗式類神經網路
★ 機器學習
關鍵字(英) ★ Learning Analytics
★ Code defects
★ Coding style
★ Domain Adversarial Neural Network
★ Machine learning
論文目次 摘要 . V
ABSTRACT . VI
圖目錄 IX
表目錄 . X
一、緒論 1
1.1 程式課程學習能力評估 1
1.2 程式碼品質檢測 2
二、文獻探討 4
2.1 學生程式課程學習分析(Program course analysis of student)  4
2.2 學習分析(Learning Analytics)   5
2.3 機器學習(Machine learning) 7
2.4 NASA MDP 資料集(NASA MDP datasets) 7
2.5 遷移式學習(Transfer learning) 8
2.6 場域對抗式類神經網路(Domain Adversarial Neural Network) 9
三、研究問題 10
四、系統架構 11
五、線上程式語言學習參與度指標 12
5.1. 線上程式撰寫平台 13
5.2. 半結構化日誌過濾與萃取 14
5.3. 資訊倉儲與管理 14
5.4. 資訊視覺化與儀表板創建 15
5.5. 學習參與度儀表板結果 15
六、程式編寫風格檢測 17
七、程式碼缺陷評估模型 17
7.1. NASA MDP訓練資料集 19
7.1.1. NASA MDP資料前處理 22
7.2. 場域對抗類神經網路 25
7.3. DANN參數設定 27
7.4. 模型成效評估指標(Proxy A-distance, PAD) 29
7.5. 透過PAD比較DANN與其他機器學習方法的場域適應性 31
八、程式碼缺陷與程式編寫風格之間的關聯 32
8.1.程式碼缺陷與程式編寫風格指標的皮爾森相關係數檢定 32
8.2.以程式碼缺陷指標透過回歸模型預測程式編寫風格分數 33
九、結論與未來工作 35
十、參考文獻 38
參考文獻 Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., & Marchand, M. (2014). Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446.
Bolliger, D. U., & Armier Jr, D. D. (2013). Active learning in the online environment: the integration of student-generated audio files. Active Learning in Higher Education, 14(3), 201-211.
Chao, P.-Y. (2016). Exploring students′ computational practice, design and performance of problem-solving through a visual programming environment. Computers & Education, 95, 202-215.
Cocea, M., & Weibelzahl, S. (2011). Disengagement detection in online learning: Validation studies and perspectives. IEEE Transactions on Learning Technologies, 4(2), 114-124.
Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2008). Self-taught clustering. Paper presented at the Proceedings of the 25th international conference on Machine learning.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., . . . Lempitsky, V. (2016). Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1), 2096-2030.
Giesbers, B., Rienties, B., Tempelaar, D., & Gijselaers, W. (2014). A dynamic analysis of the interplay between asynchronous and synchronous communication in online learning: The impact of motivation. Journal of Computer Assisted Learning, 30(1), 30-50.
Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011). The misuse of the NASA metrics data program data sets for automated software defect prediction. Paper presented at the Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual Conference on.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.
Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53.
Huang, J. C., Huang, A. Y., Lu, O. H., Tseng, H.-C., & Yang, S. J. (2016). Learning Dashboard: Visualization of learning behavior in MOOCs. Paper presented at the The International Workshop on Technology‐Enhanced Collaborative Learning (TECL 2016) In conjunction with CRIWG/CollabTech 2016.
Hwang, W.-Y., Shadiev, R., Wang, C.-Y., & Huang, Z.-H. (2012). A pilot study of cooperative programming learning behavior and its relationship with students′ learning performance. Computers & Education, 58(4), 1267-1281.
Junco, R. (2012). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers & Education, 58(1), 162-171.
Lawrence, I., & Lin, K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 255-268.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
Lu, O. H., Huang, A. Y., Huang, J. C., Huang, C. S., & Yang, S. J. (2016). Early-Stage Engagement: Applying Big Data Analytics on Collaborative Learning Environment for Measuring Learners′ Engagement Rate. Paper presented at the Educational Innovation through Technology (EITT), 2016 International Conference on.
Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S. J. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234.
Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and high school years. American educational research journal, 37(1), 153-184.
McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering(4), 308-320.
McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. Paper presented at the AAAI-98 workshop on learning for text categorization.
Neumann, D. L., & Hood, M. (2009). The effects of using a wiki on student engagement and learning of report writing skills in a university statistics course. Australasian Journal of Educational Technology, 25(3).
Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., . . . Dean, J. (2013). Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:1312.5650.
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children′s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69(3), 493-525.
Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141.
Specht, D. F. (1991). A general regression neural network. IEEE transactions on neural networks, 2(6), 568-576.
Van Niekerk, J., & Webb, P. (2016). The effectiveness of brain-compatible blended learning material in the teaching of programming logic. Computers & Education, 103, 16-27.
van Rossum, G., Warsaw, B., & Coghlan, N. (2001). PEP 8–style guide for python code. Python. org.
Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.
Yang, T.-C., Hwang, G.-J., Yang, S. J., & Hwang, G.-H. (2015). A two-tier test-based approach to improving students′ computer-programming skills in a web-based learning environment. Journal of Educational Technology & Society, 18(1), 198.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Paper presented at the Advances in neural information processing systems.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明