博碩士論文 105522071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.161.100.24
姓名 胡庭愷(Ting-Kai Hu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一種應用於光資料中心的拓樸重設方案
(A topology reconfiguration scheme for optical datacenter network)
相關論文
★ 在無線感測網路中連續型物體的偵測與追蹤協定之設計★ 在車用無線網路中利用虛擬地標的封包繞徑協定
★ 在無線感測網路下處理不同重要性區域的覆蓋問題★ 在車用網路環境下分散式計程車呼叫協定
★ 車用無線網路車輛密度偵測方法★ 在車用無線網路中利用適應道路分割法提供區域性階層式定位服務
★ 在無線感測網路中以延長網路生命週期為目的之避洞繞徑協定★ 利用車用無線網路尋找空停車位之協定
★ 在車載無線網路中以區域性為基礎的資源分享協定★ 設計於城市環境之分散式車載隨意行動網路位置服務
★ 在無線感測網路下以方向性天線為基礎的定位方法★ 在移動式感測網路中利用移動方向的定位演算法
★ 無線感測網路中移動節點之偵測★ 在無線感測網路環境下的流量平衡資料收集與無碰撞排程協定
★ 無線感測網路中之共同移動節點偵測★ 無線感測網路克服障礙物及延長網路存活時間之繞徑協定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2023-7-1以後開放)
摘要(中) 由於近年來雲端運算的到來出現許多應用,這些應用常常需要結合多台伺服器來完成搜尋或是平行運算,導致資料中心內部的流量由 80% 伺服器對資料中心外部的流量變成70% 資料中心內部的伺服器間的流量。導致資料中心往光通訊發展,以往所提出的光資料中心架構通常有一個高成本的控制器來收集流量資訊並改變拓樸達到最大的吞吐量。我們提出一個以正方體(cube) 為基礎的網路拓樸,稱為CB,此拓樸會規律的改變且不需要控制器來收集流量資訊並改變拓樸就會有高吞吐量。並且使用Matlab 這套軟體來評估我們與其他方法的效能。
摘要(英) Due to the development of cloud computing, there are many applications for searching, parallel computing, etc, which requires a large number of servers and results in high traffic volume between servers. To satisfy the huge
traffic volume, previous approaches usually require a high-cost controller to collect the traffic demand from top of racks, and using traffic demand to determine
a new topology with highest throughput. In this paper, we propose the cube-baesd topology called CB. CB can change regularly and doesn’t need a high cost controller to collect traffic information. According to the simulation
results, CB has outperforms in terms of throughput compared to previous approaches.
關鍵字(中) ★ 資料中心
★ 光通訊
★ 拓樸
關鍵字(英) ★ Data center network
★ optical communication
★ topology
論文目次 中文摘要i
Abstract ii
致謝iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related work 5
2.1 Electrical packet switch vs. Optical circuit switch . . . . . . . . . . . . . 5
2.2 Three type of optical datacenter Architecture . . . . . . . . . . . . . . . 6
2.2.1 Hybrid switch architecture . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Optical switch architecture . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Wireless architecture . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Summary previous proposals . . . . . . . . . . . . . . . . . . . . 8
2.3 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 A topology reconfiguration scheme for optical datacenter network 14
3.1 The overall optical datacenter architecture . . . . . . . . . . . . . . . . . 14
3.2 Topology reconfiguration mechanism and connection patterns . . . . . . 15
iv
3.2.1 Topology reconfiguration mechanism . . . . . . . . . . . . . . . 15
3.2.2 Connection patterns . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The overall transimission mechanism . . . . . . . . . . . . . . . . . . . 16
3.3.1 2 hop and 3 hop transmission . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Transmission strategy . . . . . . . . . . . . . . . . . . . . . . . 18
4 Evaluation 26
4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Throughput analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Conclusion and Future Work 31
Bibliography 32
參考文獻 [1] Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper.”
https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paperc11-
738085.html.
[2] G. E. Keiser, “A review of wdm technology and applications,” Optical Fiber Technology,
vol. 5, no. 1, pp. 3–39, 1999.
[3] Facebook, “Introducing data center fabric, the next-generation facebook data center
network.” https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric-the-next-generationfacebook-
data-center-network/.
[4] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman,
G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture
for modular data centers,” in ACM SIGCOMM, vol. 40, pp. 339–350, 2010.
[5] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and
M. Ryan, “C-through: Part-time optics in data centers,” in ACM SIGCOMM, vol. 40,
pp. 327–338, 2010.
[6] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C.
Snoeren, and G. Porter, “Circuit switching under the radar with reactor.,” in NSDI,
vol. 14, pp. 1–15, 2014.
32
[7] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman,
G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the
data center,” in ACM SIGCOMM, vol. 43, pp. 447–458.
[8] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng,
“Mirror mirror on the ceiling: Flexible wireless links for data centers,” in ACM SIGCOMM,
vol. 42, pp. 443–454, 2012.
[9] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Augmenting data
center networks with multi-gigabit wireless links,” in ACM SIGCOMM, vol. 41,
pp. 38–49, 2011.
[10] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and
A. Tanwer, “Firefly: A reconfigurable wireless data center fabric using free-space
optics,” in ACM SIGCOMM, vol. 44, pp. 319–330, 2014.
[11] W. M. Mellette and J. E. Ford, “Scaling limits of mems beam-steering switches for
data center networks,” in Journal of Lightwave Technology, vol. 33, pp. 3308–3318,
2015.
[12] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C. Snoeren,
and G. Porter, “Rotornet: A scalable, low-complexity, optical datacenter network,”
in ACM SIGCOMM, pp. 267–280, 2017.
[13] Cisco, “Cisco nexus 9236c switch.” https://www.cisco.com/c/en/us/
products/switches/nexus-9236c-switch/index.html.
[14] J. Edmonds, “Paths, trees, and flowers,” in Classic Papers in Combinatorics,
pp. 361–379, 2009.
[15] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: a topology
malleable data center network,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, p. 8, 2010.
33
[16] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and
Y. Chen, “Osa: An optical switching architecture for data center networks with
unprecedented flexibility,” in IEEE/ ACM Transactions on Networking, vol. 22,
pp. 498–511, 2014.
[17] S. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role
of optical packet switching and flexible bandwidth optical networking,” in Optical
Network Design and Modeling (ONDM), pp. 1–6, 2012.
[18] H. Wang and K. Bergman, “A bidirectional 2×2 photonic network building-block
for high-performance data centers,” in Optical Fiber Communication Conference
and Exposition (OFC/NFOEC), 2011.
[19] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A.
Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “Projector: Agile reconfigurable
data center interconnect,” in ACM SIGCOMM, pp. 216–229, 2016.
[20] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,”
in ACM Hotnets, 2009.
[21] K. optron, “Switchable mirror.” http://kentoptronics.com/
switchable.html.
[22] T. M. Inc., “Matlab.” https://www.mathworks.com/products/
matlab.html.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明