博碩士論文 105522081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.239.76.211
姓名 陳俞毓(Yu-Yu Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 空氣汙染物與疾病關聯性之研究與利用深度學習預測疾病
(A Study of Correlation between Air Pollutants and Diseases and Diseases Prediction by Deep Learning)
相關論文
★ 利用質譜儀資料快速檢測金黃色葡萄球菌之抗藥性★ 根據質譜儀資料辨識大腸桿菌抗藥性之特徵峰值
★ 蛋白質賴氨酸丙二酰化修飾作用位點之預測系統★ 基於機器學習方法的抗微生物肽活性預測 及特徵分析
★ 用於預測抗菌肽多種功能類別的多標籤分類器★ 利用機器學習預測濁水溪沖積扇區域之地下水砷汙染
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,環境因素對人類的影響不斷增加,這現象儼然成為一個棘手的問題。在此
情形下,很多研究者投入此方向並表明了許多不同種類的疾病與環境因素之間的聯繫,
而在這些環境因素中空氣污染和水質之討論尤其眾多。與此同時,環境因素對個體的影
響也不盡相同,在這種情形下個體所產生的疾病也不盡相同。因此,在本研究中,我們
建立一個自動化分析系統來分析任何疾病與環境因素之間的關係,並構建一個基於深度
學習併考量空氣狀態或水質狀態的疾病預測模型。因為在水質部分並無即時值可供我們
建構平台,所以平台主要關注在空氣汙染物的部分,而結果表明,儘管我們的疾病與空
氣汙染物關聯之自動化系統的分析結果與以往的研究結果有一定的差異,但它們之間的
相似的部分仍然佔了大多數。在疾病預測方面,我們在總體的疾病預測上有較好的表
現。
摘要(英) In recent year, the influence on human beings of environmental factors increasing has
been a hot potato and there was a lot of research has shown the association between different
kinds of diseases and environmental factors, especially air pollutants and water quality.
Meanwhile, influence on individuals by environmental factors are not all the same, and the
diseases they get are different. Therefore, in this study, we want to implement an automatic
system to analyze the relationship between any disease on Longitudinal Health Insurance
Database (LHID) and environmental factors and construct deep learning-based models for
diseases prediction incorporating air status or water quality status. However, there is no
instantaneous value of water quality, so we focus on air pollutants on automatic analysis
system. The results show that even though there are some differences between the analytical
results from our system and the previous research, the similarities between them are in
majority. In diseases prediction, we show high performance on the overall forecast. Our
models considered medical information from LHID, incorporating air pollutants, location
information, and water quality. The accuracy among these four features is 89.49%, 89.59%,
89.59%, and 89.56% separately. In short, incorporating these environmental factors can
improve the accuracy of deep learning-based diseases prediction actually.
關鍵字(中) ★ 健保資料庫
★ 空氣汙染
★ 分析系統
★ 疾病預測
關鍵字(英) ★ NHIRD
★ Air pollution
★ analysis system
★ disease prediction
論文目次 摘要 .......................................................................................................................................................... i Abstract ................................................................................................................................................... ii Table of Contents ................................................................................................................................... iv List of Figures ......................................................................................................................................... v List of Tables ......................................................................................................................................... vii Chapter 1 Introduction ....................................................................................................................... 1 1.1 Background ............................................................................................................. 1 1.2 Motivation .............................................................................................................. 4 1.3 Research Goal ......................................................................................................... 5 Chapter 2 Related Works .................................................................................................................... 7 Chapter 3 Materials and Methods ...................................................................................................... 9 3.1 Disease Correlations ............................................................................................... 9 3.1.1 Data Sources ....................................................................................................... 9 3.1.2 Data Preprocessing ........................................................................................... 10 3.1.3 Analysis Framework ......................................................................................... 11 3.1.4 Design of Platform and Website ....................................................................... 14 3.1.5 Data Converter and Result Converter ............................................................... 16 3.2 Disease Prediction ................................................................................................ 18 3.2.1 Data Sources ..................................................................................................... 18 3.2.2 Data Preprocessing ........................................................................................... 19 3.2.3 Deep Learning-Based Disease Prediction ........................................................ 23 3.2.4 Feedforward Neural Network ........................................................................... 26 3.2.5 Bidirectional Long Short-Term Memory .......................................................... 27 3.2.6 Evaluation Methods .......................................................................................... 31 Chapter 4 Results ............................................................................................................................. 37 4.1 Demonstration of Web-based User Interface ........................................................ 37 4.2 Comparison between Automatic Analysis System and Previous Results ............ 44 4.2.1 Parkinson’s Disease .......................................................................................... 44 4.2.2 Chronic Obstructive Pulmonary Disease .......................................................... 48 4.2.3 Chronic Kidney Disease ................................................................................... 50 4.3 Results of Disease Prediction ............................................................................... 52 Chapter 5 Discussions and Conclusions .......................................................................................... 58 5.1 Discussions ........................................................................................................... 58 5.2 Conclusions .......................................................................................................... 62 Chapter 6 Future Works ................................................................................................................... 63 Reference ............................................................................................................................................... 64
參考文獻 1. Forouzanfar, M.H., et al., Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 2016. 388(10053): p. 1659-1724. 2. McConnell, R., et al., Childhood incident asthma and traffic-related air pollution at home and school. Environmental health perspectives, 2010. 118(7): p. 1021. 3. Chang, K.-H., et al., Air pollution exposure increases the risk of rheumatoid arthritis: a longitudinal and nationwide study. Environment international, 2016. 94: p. 495-499. 4. Monrad, M., et al., Long-term exposure to traffic-related air pollution and risk of incident atrial fibrillation: a cohort study. Environmental health perspectives, 2017. 125(3): p. 422. 5. Palacios, N., et al., Air pollution and risk of parkinson’s disease in a large prospective study of men. Environmental health perspectives, 2017. 125(8): p. 087011. 6. Alter, N., et al., Effect of weather conditions on acute gouty arthritis. Scandinavian journal of rheumatology, 1994. 23(1): p. 22-24. 7. Nyberg, F., et al., Urban air pollution and lung cancer in Stockholm. 2000, LWW. 8. Dai, S.-M., et al., Prevalence of rheumatic symptoms, rheumatoid arthritis, ankylosing spondylitis, and gout in Shanghai, China: a COPCORD study. The Journal of rheumatology, 2003. 30(10): p. 2245-2251. 9. Peacock, J.L., et al., Outdoor air pollution and respiratory health in patients with COPD. Thorax, 2011. 66(7): p. 591-596. 10. Neogi, T., et al., Relation of temperature and humidity to the risk of recurrent gout attacks. American journal of epidemiology, 2014. 180(4): p. 372-377. 11. Chang, K.-H., et al., Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: a population-based retrospective cohort study. PloS one, 2014. 9(8): p. e103078. 12. Choi, H.J., et al., Seasonality of gout in Korea: a multicenter study. Journal of Korean medical science, 2015. 30(3): p. 240-244. 13. Wu, Y.-C., et al., Association between air pollutants and dementia risk in the elderly. Alzheimer′s & Dementia: Diagnosis, Assessment & Disease Monitoring, 2015. 1(2): p. 220-228. 14. Huang, C.-H., et al., Influenza vaccination and the endurance against air pollution among elderly with acute coronary syndrome. Vaccine, 2016. 34(50): p. 6316-6322. 15. Lo, P.-C., et al., Risk of asthma exacerbation associated with nonsteroidal anti-inflammatory drugs in childhood asthma: A nationwide population-based cohort study in Taiwan. Medicine, 2016. 95(41). 16. Wu, C., et al., Water pollution and human health in China. Environmental Health Perspectives, 1999. 107(4): p. 251. 17. Ebenstein, A., The consequences of industrialization: evidence from water pollution and digestive cancers in China. Review of Economics and Statistics, 2012. 94(1): p. 186-201. 18. Lu, Y., et al., Impacts of soil and water pollution on food safety and health risks in China. Environment international, 2015. 77: p. 5-15. 19. Lin, T.-W., Building an automated analysis system ro analyze correlation between any two diseases by cohort study design on Longitudinal Health Insurance Database (LHID). . Master thesis, 2015. 20. Hung, T.-W., Design and implementation of an automated analysis system to analyze correlations between a drug and diseases. Master thesis, 2016. 21. Xu, J.-L., Building an automatic analysis system to analyze correlations between a disease and site-specific cancers. 2016. 22. Stamate, C., et al. Deep learning Parkinson′s from smartphone data. in Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on. 2017. IEEE. 23. Choi, H., et al., Refining diagnosis of Parkinson′s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage: Clinical, 2017. 16: p. 586-594. 24. Pereira, C.R., et al. Deep Learning-Aided Parkinson′s Disease Diagnosis from Handwritten Dynamics. in Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI Conference on. 2016. IEEE. 25. Miotto, R., et al., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scientific reports, 2016. 6: p. 26094. 26. Zheng, C., et al., Using natural language processing and machine learning to identify gout flares from electronic clinical notes. Arthritis care & research, 2014. 66(11): p. 1740-1748. 27. Chen, M., et al., Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 2017. 5: p. 8869-8879. 28. Haykin, S. and N. Network, A comprehensive foundation. Neural networks, 2004. 2(2004): p. 41. 29. Lee, P.-C., et al., Traffic-related air pollution increased the risk of Parkinson′s disease in Taiwan: a nationwide study. Environment international, 2016. 96: p. 75-81. 30. Schikowski, T., et al., Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respiratory research, 2005. 6(1): p. 152. 31. Pauwels, R.A., et al., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. American journal of respiratory and critical care medicine, 2001. 163(5): p. 1256-1276. 32. Han, M.K., et al., Gender and chronic obstructive pulmonary disease: why it matters. American journal of respiratory and critical care medicine, 2007. 176(12): p. 1179-1184. 33. Yang, Y.-R., et al., Associations between long-term particulate matter exposure and adult renal function in the Taipei metropolis. Environmental health perspectives, 2017. 125(4): p. 602. 34. Administration, T.N.H.I., National Health Insurance Statistical Trends-2013. 2014.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明