博碩士論文 105522603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.219.66.237
姓名 方達(Nurya Aghnia Farda)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 Sanders CT採用PCANet和數據增強技術對跟骨骨折圖像進行分類
(Sanders CT Classification of Calcaneal Fracture Images using PCANet and Data Augmentation Techniques)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 基於 ARM 架構上的 ORB-SLAM2 的應用與改進
★ 基於深度學習之指數股票型基金趨勢預測★ 探討財經新聞與金融趨勢的相關性
★ 基於卷積神經網路的情緒語音分析★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 跟骨骨折占t骨?域所有成人骨折的60%以上。建?确定患者是否患有跟骨骨折可能非常具有挑?性。?生通常??行X光和CT?查,并?患者?行?外的?查。?了?予最佳治?,整形外科需要知道跟骨骨折的?型。然而,即使在CT?像的?助下,它?仍然成?确定骨折?型的??。
除此之外,机器??和深度??已???增?,它能?解??多不同?域的复?任?。在生物???域,它已被用于????像中??和分?癌??。在??研究中,我??PCANet?用于深度神?网?架构。
此外,由于患有跟骨骨折CT?像的患者?量?少,影??据集的?量,我?采用?据增?技??????段生成新的?据集。我?的?察表明,???添加增??据可以??提高??准确性。
最后,我?提出了一?初步研究,?容涉及建立健?的跟骨骨折??系?所涉及的可能性,机遇和挑?。我?的???果表明,我?提出的方法可以?到高?70%的??精度。
摘要(英) Calcaneus fracture has contributed to more than 60% of all adult fractures on the tarsal bones area. It is suggested that determining if a patient is having a calcaneal fracture can be very challenging. Doctors usually will perform an X-Ray and CT examination and doing additional tests with the patients. In order to give the best treatment, orthopedics need to know the type of the calcaneal fracture. However, it is still becoming a problem for them to determine the fracture type even with the help of CT images.
Apart from that, machine learning and deep learning has grown significantly that it is able to solve complex tasks in many different fields. In biomedical fields, it has been used to detect and classify cancer tissues from medical images. In this research, we apply PCANet for the deep neural network architecture.
Also, due to the small number of patients having the calcaneal fracture CT images which affect on the number of dataset, we employ a data augmentation technique to generate new dataset for the training phase. Our observation shows that the addition of augmented data for training can increase the detection accuracy significantly.
In the end, we present a preliminary study regarding the possibility, opportunities, and challenges which are involved in building a robust calcaneal fracture detection system. Our experimental results show that our proposed approach can reach up to 70% of detection accuracy.
關鍵字(中) ★ 卷積神經網絡
★ PCANet
★ 跟骨骨折檢測
★ 圖像增強
關鍵字(英) ★ Convolutional Neural Network
★ PCANet
★ calcaneus fracture detection
★ image augmentation
論文目次 1 CHAPTER 1 1
1.1 Background 1
2 CHAPTER 2 3
2.1 Medical Images Evolution 3
2.1.1 Computed Tomography Scan Images 3
2.2 Calcaneus 5
2.2.1 Calcaneus Fracture 8
2.3 Sanders Classification 10
2.4 Image Processing 12
2.5 Machine Learning and Deep Learning 14
2.5.1 Deep Learning in Medical Imaging 15
2.6 PCANet 16
2.7 Image Augmentation 18
3 CHAPTER 3 22
3.1 System architecture 22
3.2 Dataset 23
3.2.1 Data preparation: Dataset selection and labelling 24
3.2.2 Image Processing 28
3.2.3 Image Augmentation 30
3.3 Experiment designs 32
3.3.1 Experiment 1: feasibility of the proposed approach 32
3.3.2 Experiment 2: feasibility of the proposed approach using augmented training images 34
3.4 Performance Evaluation 34
4 Experiments and Results 35
4.1 Experiment 1: feasibility of the proposed approach 35
4.1.1 Experiment 1.1 35
4.1.2 Experiment 1.2 36
4.2 Experiment 2: feasibility of the proposed approach using augmented training images 38
5 CONCLUSIONS AND FUTURE WORKS 41
5.1 Conclusions 41
5.2 Future Works 41
6 References 42
參考文獻 [1] "Calcaneus heel bone fractures," [Online]. Available: https://orthoinfo.aaos.org/en/diseases--conditions/calcaneus-heel-bone-fractures/.
[2] K. Palmersheim, B. Hines and B. L.Olsen, "Calcaneal Fractures: Update on Current Treatments," Clinics in Podiatric Medicine and Surgery.
[3] M. Galluzzo, F. Greco, M. Pietragalla and A. D. Renzis, "Calcaneal fractures: radiological and CT evaluation and classification systems," Acta Biomed , vol. 89, pp. 138-150, 2018.
[4] A. Daftary, A. H. Haims and M. R., "Fractures of the Calcaneus: A Review with Emphasis on CT," RadioGraphics , vol. 25, p. 1215–1226, 2005.
[5] G. Litjens, T. Kooi and B. E. Bejnordi, "A Survey on Deep Learning in Medical Image Analysis".
[6] M. I. Razzak, S. Naz and A. Zaib, "Deep Learning for Medical Image Processing: Overview, Challenges and Future".
[7] K. Badillo, J. A. Pacheco, S. O. Padua and A. A. Gomez, "Multidetector CT Evaluation of Calcaneal Fractures," RadioGraphics, vol. 31, pp. 81-92, 2011.
[8] L. Heger and K. Wulff, "Computed Tomography of the Calcaneus: Normal Anatomy," AJR, vol. 145, pp. 123-129, 1985.
[9] [Online]. Available: https://orthoinfo.aaos.org/en/diseases--conditions/calcaneus-heel-bone-fractures/.
[10] M. Michael Shereff, "Calcaneal (Calcaneus) Fracture," [Online]. Available: https://www.footeducation.com/page/calcaneal-fracture.

[11] A. Murphy, D. M. Skalski and e. al., "Sanders CT classification of calcaneal fracture," [Online]. Available: https://radiopaedia.org/articles/sanders-ct-classification-of-calcaneal-fracture-2#image_list_item_5635063.
[12] "Mathematical morphology," [Online]. Available: https://en.wikipedia.org/wiki/Morphological_image_processing.
[13] "Morphological Image Processing," [Online]. Available: https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm.
[14] "Eroding and Dilating," [Online]. Available: https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html.
[15] N. Jamil, T. M. T. Sembok and Z. A. Bakar, "Noise Removal and Enhancement of Binary Images Using Morphological Operations".
[16] M. R. Bai, V. V. Krishna and J. SreeDevi., "A new morphological approach for noise removal cum edge detection," International Journal of Computer Science Issues (IJCSI), vol. 7, p. 187, 2010.
[17] D. Ze-Feng, Y. Zhou-Ping and X. You-Lun, "High Probability Impulse Noise-Removing Algorithm Based on Mathematical Morphology," IEEE Signal Processing Letters , vol. 14, pp. 31-34, 2007.
[18] H. Yang, H. Yu and G. Wang, "Deep Learning for the Classification of Lung Nodules".
[19] N. Sharma and L. M. Aggarwal, "Automated medical image segmentation techniques," J Med Phys , vol. 1, pp. 3-14, 2010 .
[20] G. Wu, D. Shen and M. Sabuncu, Machine Learning and Medical Imaging, USA, 2016.
[21] M. Ghafoorian, A. Mehrtash, T. Kapur, N. Karssemeijer and E. Marchiori, "Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation".
[22] Y. Yang, T. Li, W. Li and H. Wu, "Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks".
[23] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng and Y. Ma, "PCANet: A Simple Deep Learning Baseline for Image Classification," IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5017-5032, 2015.
[24] K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, "What is the best multi-stage architecture for object recognition," ICCV, 2009.
[25] A. Krizhevsky, I. Sutskever and G. Hinton, "Imagenet classification with deep convolutional neural network," NIPS, 2012.
[26] J. Wang and L. Perez, "The Effectiveness of Data Augmentation in Image Classification using Deep Learning".
[27] M. D. Bloice, C. Stocker and A. Holzinger, "Augmentor: An Image Augmentation Library for Machine Learning," 2017.
[28] M. D. Bloice, "Augmentor," MIT, 2016. [Online]. Available: https://augmentor.readthedocs.io/en/master/userguide/mainfeatures.html.
[29] K. A. Satoshi Suzuki, "Topological structural analysis of digitized binary images by border following," Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32-46, 1985.
[30] G. Volpin, Z. Cohen, G. Kirshner and H. Shtarker, "Displaced Intra-articular Calcaneal Fractures: Current Concepts and Modern Management," JFAS (asia-pacific), vol. 1, pp. 24-31, 2016.
[31] X. W. Gao and R. Hui, "A Deep Learning Based Approach to Classification of CT Brain Images," SAI Computing Conference , 2016.
[32] v. Grinsven, v. G. B., C. B. Hoyng and T. T., "Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images," IEEE trans med imaging.
指導教授 王家慶(Wang, Jia-Ching) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明