博碩士論文 105522605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.89.204.127
姓名 法蘭馬拉(Raviqul Haidir Franscasmara)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 最佳化數據分發服務(DDS)系統主題的服務品質(QoS)參數
(Optimizing Quality of Service (QoS) Parameters of Topics for Data Distribution Service (DDS) Systems)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 應用方位感測器之手機使用者識別機制
★ 非侵入式多模組之手機使用者識別機制 :基於動態方法★ 多分類器組合應用於財務危機預測
★ 漸進式模型應用於財務危機預測問題★ Bus Arrival Prediction - to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei)
★ 公車路線規劃系統之資料自動收集系統實作★ 特徵挑選方法和分類器在財務危機預測問題中比較
★ OR ensemble 應用於財務危機預測★ 智慧型手機使用者操作姿勢對於非侵入式識別機制的影響分析:基於動態方法
★ 工業生產線數據分析平台之自動化測試與實作案例★ 公司治理指標在財務危機預測: 以台灣上市上櫃公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-9-27以後開放)
摘要(中) 最近網路中心系統的發展趨勢促進了訊息管理能力的發展,確保在規定的時間範圍內有效地在正確的地點提供正確的訊息,以滿足許多不同環境中的服務品質(QoS)要求。數據分發服務中間軟體提供了一種解決方案,它使用服務品質(QoS)策略作為一組特性來驅動給定的行為,使服務能夠滿足這些要求。QoS策略具有廣泛且可以應用於在系統內互動的實體對象,如發布者、訂閱者和主題等的屬性,舉例來說,總共有11個QoS策略適用於主題實體,但很難找到這些策略及其適當價值的最佳組合。在本文中,我們提出了一種通過僅使用適用於主題實體的QoS策略來最佳化特定系統設計性能(丟失率和延遲)的方法。我們使用相關分析和我們實驗中收集的數據集的QoS策略規範來找出每個QoS策略對性能的影響。最後的結果我們發現,能夠最佳化特定系統設計的丟失率性能的QoS策略組合是可靠性(Reliability)和持久性(Durability)QoS,而提高延遲性能的是截止(Deadline)QoS。
摘要(英) Recent trends in net-centric systems motivate the development of information management capabilities that ensure the right information is delivered at the right place efficiently within specified time-range to satisfy the quality of service (QoS) requirements in many different environments. Data Distribution Service middleware offers a solution with the use of Quality of Service (QoS) Policies as a set of characters that drive a given behavior of the service so it may able to fulfill those requirements. QoS Policies has a wide range of attributes that can be applied to the Entity objects interacting within the system such as publisher, subscriber, topic etc. for example there are a total of 11 QoS Policies applicable to the Topic entity, however, it is difficult to find an optimal combination of these policies and their appropriate value. In this thesis we propose a way to optimize the performance (loss rate and latency) of a particular system design by using only the QoS Policy applicable to Topic entity. We use correlation analysis and the specification of QoS Policies for the collected dataset from our experiment to find the impact for each QoS policy toward the performance. The final result we found out that the combination of QoS Policies for a particular system design that able to optimize the performance of loss rate are Reliability & Durability QoS while to improve the performance of latency is Deadline QoS.
關鍵字(中) ★ 分佈式系統
★ 數據分發服務
★ 仿真
★ 服務品質
關鍵字(英) ★ Distributed System
★ Data Distribution Service
★ Emulation
★ Quality of Service
論文目次 Abstract i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES vi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation 2
1.3 Research Objective 3
1.4 Thesis Structure 3
CHAPTER 2 BACKGROUND KNOWLEDGE & RELATED WORK 4
2.1 DDS OpenSplice 4
2.2 Quality of Services (QoS) in OpenSplice 5
2.3 Correlation Analysis 8
CHAPTER 3 METHODOLOGY 11
3.1 Testbed Overview 11
3.1.1 DDS Profile 12
3.1.2 Data Setting 14
3.1.3 Performance Report 17
3.2 Formal Requirement of System 18
CHAPTER 4 EXPERIMENT SETUP & ANALYSIS 20
4.1 Experiment Setup 20
4.2 Experiment Design 22
4.3 Experiment Result and Analysis 24
4.3.1 System Load Result 24
4.3.2 Quality of Service Analysis Result on Light Load 28
4.3.4 Quality of Service Analysis Result on Medium Load 30
4.3.5 Quality of Service Analysis Result High Load 32
4.4 Experiment Using the result from Correlation Table 34
CHAPTER 5 CONCLUSION 44
REFERENCES 45
參考文獻 [1] D. C. Schmidt and H. V. Hag, “Addressing the challenges of mission-critical information management in next-generation net-centric pub/sub systems with OpenSplice DDS,” in IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM, 2008.
[2] C. H. Kim, G. Yoon, W. Lee, J. Park, and H. Choi, “A performance simulator for DDS networks,” Int. Conf. Inf. Netw., vol. 2015–Janua, pp. 122–126, 2015.
[3] G. Pardo-Castellote, “Omg data-distribution service: Architectural overview,” Distrib. Comput. Syst. Work. 2003. Proceedings. 23rd Int. Conf., pp. 200–206, 2003.
[4] A. G. Asuero, A. Sayago, and A. G. González, “The correlation coefficient: An overview,” Crit. Rev. Anal. Chem., vol. 36, no. 1, pp. 41–59, 2006.
[5] B. Almadani, M. N. Bajwa, S. H. Yang, and A. W. A. Saif, “Performance evaluation of DDS-based middleware over wireless channel for reconfigurable manufacturing systems,” Int. J. Distrib. Sens. Networks, vol. 2015, 2015.
[6] G. Yoon, S. Lee, and H. Choi, “QoS Optimizer,” 2016 Int. Conf. Platf. Technol. Serv. PlatCon 2016 - Proc., 2016.
[7] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli, “Dynamic QoS Management and Optimisation in Service-Based Systems,” Softw. Eng. IEEE Trans., vol. PP, no. 99, p. 1, 2010.
[8] N. Vinay, “Converted nested JSON file to CSV,” 2017. [Online]. Available: https://dev.to/vinay20045/converting-nested-json-to-csv.
[9] D. Ferrary and S. Zhou, “An Empirical Investigation of Load Indices for Load Balancing Applications,” Proceeding Performance ’87 Proceedings of the 12th IFIP WG 7.3 International Symposium on Computer Performance Modelling, Measurement and Evaluation. pp. 515–528, 1987.
[10] H. Pérez and J. J. Gutiérrez, “Modeling the QoS parameters of DDS for event-driven real-time applications,” J. Syst. Softw., vol. 104, pp. 126–140, 2015.
[11] M. S. Essers and T. H. J. Vaneker, “Evaluating a Data Distribution Service System for Dynamic Manufacturing Environments: A Case Study,” Procedia Technol., vol. 15, pp. 621–630, 2014.
[12] K. Potter, “Methods for Presenting Statistical Information: The Box Plot,” Vis. Large Unstructured Data Sets, vol. 4, pp. 97–106, 2006.
[13] N. J. Gogtay and U. M. Thatte, “Principles of correlation analysis,” J. Assoc. Physicians India, vol. 65, no. MARCH, pp. 78–81, 2017.
[14] C. Esposito, “Data Distribution Service (DDS) Limitations for Data Dissemination wrt Large-scale Complex Critical Infrastructures (LCCI),” Mobilab.Unina.It, no. Lcci, 2011.
[15] A. Corsaro, “Mastering Quality of Service Policies in DDS OpenSplice.” .
指導教授 梁德容(Deron Liang) 審核日期 2018-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明