博碩士論文 105522610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.206.194.161
姓名 羅菲倩(Rofiqoh Fithri Atsiri)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於虹膜色彩空間的極端學習機的多類型頭痛分類
(Multi-type Headache Classification Using ELM Based on Iris Color Space)
相關論文
★ 以多分數加權融合方式進行虹膜影像品質檢定★ 基於深度學習之工業用智慧型機器視覺系統:以文字定位與辨識為例
★ 基於深度學習的即時血壓估測演算法★ 基於深度學習之工業用智慧型機器視覺系統:以焊點品質檢測為例
★ 以核方法化的相關濾波器之物件追蹤方法 實作眼動儀系統★ 雷射都普勒血流原型機之驗證與校正
★ AILIS: An Adaptive and Iterative Learning Method for Accurate Iris Segmentation★ 以生成對抗式網路產生特定目的影像—以虹膜影像為例
★ 一種基於Faster R-CNN的快速虹膜切割演算法★ 運用深度學習、支持向量機及教導學習型最佳化分類糖尿病視網膜病變症狀
★ 應用卷積神經網路的虹膜遮罩預估★ Collaborative Drama-based EFL Learning with Mobile Technology Support in Familiar Context
★ 可用於自動訓練深度學習網路的網頁服務
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 頭痛是人類最常見的疾病。頭痛患者常常出現幾種類型的頭痛,每種都有自己的症狀,在視覺上和身體上都很明顯,因此,頭痛的診斷是一個懸而未決的問題。對頭痛患者的初步觀察顯示症狀方面的虹膜變色。本研究通過將基本原色空間,色度和亮度以及人類視角色空間作為虹膜色彩空間的表示,以及試圖研究哪種色彩成分是解決該問題的最佳解決方案,提出了定量分類。
ELM是單層前饋神經網絡的強大修改,用於對189個主題數據進行二元和多類分類,分發到162名頭痛患者和27名對照受試者。對應於使用ELM作為分類器的便利性,通過考慮ELM內隱藏節點的數量來比較分類性能。結果得出相對較好的結果,以區分對照受試者和頭痛患者,以及他們的頭痛類型。
摘要(英) Headache is the most common illness for human. There are several types of headache commonly occurs among headache patients, each has their own symptoms which are visually and physically noticeable, hence, the headache diagnosis is an open problem. The preliminary observations on headache patients have shown iris-discoloration on the symptomatic side. This study proposes a quantitative classification by taking basic primary color space, chrominance and luminance, and human perspective color space as representation of iris color space, as well as trying to investigate which color components are the best solution to address the problem.
ELM, a robust modification of single layer feedforward neural network, is implemented to do the binary and multiclass classification on 189 subject data, distributed into 162 headache patients and 27 control subjects. Corresponding to the conveniences of using ELM as classifier, the classification performance was compared by considering the number of hidden nodes inside ELM. The result obtained relatively good result to distinguish control subject and headache patient, along with their type of headache.
關鍵字(中) ★ 頭痛分類
★ 虹膜色彩空間
★ ELM
關鍵字(英) ★ headache classification
★ iris color space
★ ELM
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGMENT ii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 IRIS COLOR SPACE AND HEADACHE CLASSIFICATION 3
2.1 Headache Classification 3
2.1.1 Migraine 4
2.1.1.1 Migraine without Aura 4
2.1.1.2 Migraine with Aura 4
2.1.1.3 Chronic Migraine 4
2.1.2 Cluster Headache 5
2.1.3 Medication Overuse Headache (MOH) 5
2.2 Color Space 5
2.2.1 RGB Color Space 6
2.2.2 YCbCr Color Space 7
2.2.3 HSV Color Space 8
2.2.4 L*a*b Color Space 9
2.3 Extreme Learning Machine 10
2.4 Random Forest Regressor 12
CHAPTER 3 METHODOLOGY 14
3.1 Iris Patch Segmentation 14
3.2 Feature Classification using Extreme Learning Machine 16
CHAPTER 4 EXPERIMENT SETUP 18
4.1 Data Collection Setup 18
4.2 Data Preprocessing 19
4.3 Data Distribution 20
CHAPTER 5 EXPERIMENT RESULT AND DISCUSSION 21
5.1 Experiment Result 21
5.2 Discussion 28
REFERENCES 31
參考文獻 [1] Eagle Jr, R. C. "Iris pigmentation and pigmented lesions: an ultrastructural study." Transactions of the American Ophthalmological Society 86 (1988): 581.
[2] Wielgus, Albert R., and Tadeusz Sarna. "Melanin in human irides of different color and age of donors." Pigment cell research 18.6 (2005): 454-464.
[3] Boulton, M. "Melanin and the RPE." The Retinal Pigment Epithelium (1998): 68-85.
[4] Barrett, Stephen. "Iridology is nonsense." Consultado el 30 (2004).
[5] El-Yaagoubi, Mohammed, et al. "Cluster Headache Diagnosis Using Iris Color Features and Statistical Pixel Classification." XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. Springer, Cham, 2016.
[6] Imesch, Pascal D., Ingolf HL Wallow, and Daniel M. Albert. "The color of the human eye: a review of morphologic correlates and of some conditions that affect iridial pigmentation." Survey of ophthalmology 41 (1997): S117-S123.
[7] Tkalcic, Marko, and Jurij F. Tasic. Colour spaces: perceptual, historical and applicational background. Vol. 1. IEEE, 2003.
[8] Chaves-Gonzalez, Jose M., et al. "Detecting skin in face recognition systems: A colour spaces study." Digital Signal Processing 20.3 (2010): 806-823.
[9] Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine: theory and applications." Neurocomputing 70.1-3 (2006): 489-501.
[10] Huang, Guang-Bin, et al. "Extreme learning machine for regression and multiclass classification." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42.2 (2012): 513-529.
[11] Headache Classification Committee of the International Headache Society (IHS). "The international classification of headache disorders, (beta version)." Cephalalgia 33.9 (2013): 629-808.
[12] Balottin, U., et al. "Iris adrenergic sensitivity and migraine in pediatric patients." Headache: The Journal of Head and Face Pain 23.1 (1983): 32-33.
[13] Lamb, Trevor D. "Evolution of phototransduction, vertebrate photoreceptors and retina." Progress in retinal and eye research 36 (2013): 52-119.
[14] Longair, Malcolm S. "Maxwell and the science of colour." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 366.1871 (2008): 1685-1696.
[15] OpenCV Documentation. https://docs.opencv.org/. last accessed on July 2018.
[16] Kaur, Amanpreet, and B. V. Kranthi. "Comparison between YCbCr color space and CIELab color space for skin color segmentation." IJAIS 3.4 (2012): 30-33.
[17] Plataniotis, Konstantinos N., and Anastasios N. Venetsanopoulos. Color image processing and applications. Springer Science & Business Media, 2013.
[18] Introduction to color theory. http://infohost.nmt.edu/. Last accessed on July 2018.
[19] Huang, Guang-Bin, et al. "Extreme learning machine for regression and multiclass classification." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42.2 (2012): 513-529.
[20] Suykens, Johan AK, and Joos Vandewalle. "Least squares support vector machine classifiers." Neural processing letters9.3 (1999): 293-300.
[21] Fung, Glenn M., and Olvi L. Mangasarian. "Multicategory proximal support vector machine classifiers." Machine learning59.1-2 (2005): 77-97.
[22] Yaseen, Zaher Mundher, et al. "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model." Advances in Engineering Software115 (2018): 112-125.
[23] Huang, Guang-Bin. "What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle." Cognitive Computation 7.3 (2015): 263-278.
[24] Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine: theory and applications." Neurocomputing 70.1-3 (2006): 489-501.
[25] Huang, Guang-Bin. "Introduction to Extreme Learning Machines." Workshop on Machine Learning for Biomedical Informatics, Nov 2006. 2006.
[26] Gromping, Ulrike. "Variable importance assessment in regression: linear regression versus random forest." The American Statistician 63.4 (2009): 308-319.
[27] Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot. "Variable selection using random forests." Pattern Recognition Letters 31.14 (2010): 2225-2236.
[28] Fitriyani, Norma Latif, Chuan-Kai Yang, and Muhammad Syafrudin. "Real-time eye state detection system using haar cascade classifier and circular hough transform." Consumer Electronics, 2016 IEEE 5th Global Conference on. IEEE, 2016.
[29] Rajpathak, Tanmay, Ratnesh Kumar, and Eric Schwartz. "Eye detection using morphological and color image processing." 2009 Florida Conference on Recent Advances in Robotics, FCRAR. 2009.
[30] Bullock, Randy. "Least-squares circle fit." Developmental Testbed Center (2006).
[31] Kordecki, Andrzej, Henryk Palus, and Artur Bal. "Practical vignetting correction method for digital camera with measurement of surface luminance distribution." Signal, Image and Video Processing 10.8 (2016): 1417-1424.
[32] Strobl, Carolin, et al. "Bias in random forest variable importance measures: Illustrations, sources and a solution." BMC bioinformatics 8.1 (2007): 25.
指導教授 栗永徽(Yung-Hui Li) 審核日期 2018-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明