博碩士論文 105523031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.22.248.208
姓名 曾睿弘(Jui-Hung Tseng)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 下行多載波多使用者利用多天線非正交多重接取技術之使用者分組以及資源配置演算法設計
(User Grouping and Resource Allocation Algorithms for Multicarrier MIMO-NOMA Systems on Downlink Beamforming)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一個以正交分頻多工(OFDM)為基礎,結合非正交多重接取(NOMA)的系統,搭配使用者迭代選擇分組演算法、子載波配置演算法及位元配置演算法等資源配置的方式來降低整體系統的傳輸功率。在多天線非正交多重接取系統中,每一個子載波可以分配給一群由多組使用者組成的用戶們進行資料傳輸,而本論文以兩個使用者為一組,透過使用比正交分頻多工系統中單一使用者更低功率的調變方式進行資料傳輸以藉此降低傳輸所需的功率。然而也因為在多天線架構下同時進行傳輸,各組使用者亦會接收到來自其他天線所發送的資料干擾(Inter-group Interference);再者,由於多使用者共用同一段頻帶,即共享同一個子載波作資料傳輸,故會產生同頻帶之間的干擾(Co-channel Interference),而此些干擾類型也是多天線非正交分頻多重接取系統所主要需克服的難題。故為了因應上述干擾,論文中採用Zero-forcing Beamforming (ZFBF)以消除來自其他天線所傳出的干擾,同時搭配連續干擾消除技術(SIC)以消除來自傳輸功率較大的使用者之干擾。基於正交分頻多重接取的系統,主要使用者(Primary User)為原先傳輸的使用者,鑒於為了在進行非正交多重接取資源配置的時候保護原傳輸的主要使用者能仍保有於每一個被分配到的子載波中傳輸,次要使用者(Secondary User)會與主要使用者一起進行資料傳輸,但不會發生搶奪原先由單一主要傳輸者改為單一次要使用者進行資料傳輸的狀況。
在本論文中將探討三個主要問題:一、各組用戶中的主要與次要使用者該如何自眾多使用者以挑選出表現最佳的使用者組合。二、在不同子載波的情況下,進行子載波配置問題。若當某個子載波中,只傳送給主要使用者所需的傳輸功率低於同時傳送至主要與次要使用者時,會選擇單獨傳送至主要使用者;反之,倘若傳送至主要與次要使用者所需的傳輸功率低於只傳送給主要使用者時,便會利用非正交多重接取技術以進行資料傳輸。最後,針對不同使用者與子載波的情況,進行調變技術的資源配置以決定最佳的整體系統所需的傳輸功率。
本論文研究的非正交多重接取技術之資源配置設計,在模擬結果中顯示,當總傳輸功率維持一樣時,在某些情況下利用非正交多重接取進行資料傳輸能有效節省功率的輸出。
摘要(英) The non-orthogonal multiple access (NOMA) allocation becomes a promising technique on downlink transmission. Additionally, recent studies show that inter-group interference and inter-user inter-group play significant roles in minimizing the total required transmit power.
In the multiple-input and multiple-output NOMA (MIMO-NOMA) systems based on orthogonal frequency division multiple access (OFDMA) systems with user grouping, subcarrier allocation and bit allocation schemes to reduce the required transmit power. Besides, we define each subcarrier is allocated to a cluster which contains groups of two users for data transmission with a lower power of modulation modes. The zero-forcing beamforming (ZFBF) and the successive interference cancellation (SIC) are used to eliminate interference from the strong user with the larger channel gain between two users in a group.
Since the system is based on OFDMA systems, the primary user is more essential than the secondary and we ensure that all assigned subcarriers transmit data to the primary user. So the secondary user will transmit data with the primary user together on several subcarriers but it’s impossible to transmit data individually. Therefore, how to allocate the resource between the primary and secondary users under two conditions in the NOMA allocation will be discussed. Based on the simulation results, the proposed scheme outperforms the Multiple-User Orthogonal Multiple Access (MU-OMA) system with the NOMA allocation by decreasing the transmit power.
關鍵字(中) ★ 非正交多重接取
★ 正交多頻分工
★ 調變模式
★ 多載波
★ 波束合成
關鍵字(英) ★ non-orthogonal multiple access(NOMA)
★ orthogonal frequency division multiple access
★ modulation mode
★ multicarrier
★ ZFBF
論文目次 論文摘要 i
Abstract iii
Contents v
List of Figures vii
List of Tables viii
Chapter1. Introduction - 1 -
1.1. Non-Orthogonal Multiple Access - 1 -
1.2. Multiple-Input multiple-output - 2 -
1.3. Zero-Forcing Beamforming - 3 -
1.4. Organization - 3 -
1.5. Contribution - 4 -
1.6. Abbreviations - 4 -
1.7. Notation - 5 -
Chapter2. System Model and Problem Formulation - 7 -
2.1. Non-Orthogonal Multiple Access System - 7 -
2.2. Problem Formulation - 17 -
Chapter3. User Grouping and ResourceAllocation Scheme - 19 -
3.1. Proposed Iteration User Grouping Scheme - 19-
3.2. Proposed Iteration Subcarrier Allocation Scheme - 23 -
3.3. Modulation Modes Conditions - 28 -
3.4. Proposed Bit Allocation Scheme - 33 -
Chapter4. Simulation - 37 -
4.1. Simulation model - 37 -
4.2. Performance of NOMA resource allocation - 39 -
Chapter5. Computaional Complexity - 45 -
Chapter6. Conclusion - 47 -
Reference - 48 -
參考文獻 [1] Z. Ding, P. Fan, and H. Vincent Poor, “Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions,” IEEE Trans. Vehicular Technology, vol. 65, Issue: 8, pp. 6010-6023, Aug. 2016.
[2] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access,” VTC, pp. 1-5, Jun. 2013.
[3] H. Sari, A. Maatouk, E. Caliskam, M. Assaad, M. Koca, and G. Gui, “On the Foundation of NOMA and its Application to 5G Cellular Networks,” IEEE Wireless Communications and Networking Conference, 2018.
[4] J. Choi, “Non-orthogonal multiple access in downlink coordinated two point systems,” IEEE Commun. Letters, vol. 18, no. 2, pp. 313–316, Feb. 2014.
[5] Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, “Signal Processing For MIMO-NOMA: Present and Future Challenges ,”IEEE Journals & Magazines vol. 25, Issue: 2, pp. 32-38, Apr, 2018.
[6] L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine vol. 53, Issue: 9, pp. 74-81, Sept. 2015.
[7] Q, Li and H, Niu, Papathanassiou, A., et al.: “5G network capacity: Key elements and technologies”, IEEE Vehicular Technology. Mag., 2014, Sep. pp. 71-78.
[8] 3GPP TS 36.211: “Physical channels and modulation”. 2011.
[9] S. Tomida and K. Higuchi, “Non-orthogonal Access with SIC in Cellular Downlink for User Fairness Enhancement,” Intelligent Signal Processing and Communications Systems (ISPACS), 2011 International Symposium on, pp.1-6, Dec. 7-9, 2011.
[10] B. Kim, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System,” IEEE MILCOM, pp. 1278-1283, Nov. 2013.
[11] Z. Shen, R. Chen, l. G. Andrews, R. W. Heath and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, vol.54, pp. 3658-3663, Sep. 2006.
[12] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems: User Clustering, Beamforming, and Power Allocation, ” IEEE Access, Dec. 2016, Vol. 5, pp.565-577.
[13] C. Y. Wong, C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A realtime subcarrier allocation scheme for multiple access download OFDM transmission,” in Proc. IEEE Veh. Technol. Conf. –Fall, Sep. 1999, vol. 2, pp. 1124-1128.
[14] Y. F. Chen and J. W. Chen, “A Fast Subcarrier, Bit, and Power Allocation Algorithm for Multiuser OFDM-Based Systems,” IEEE Trans. Vehicular Technology, Vol. 57, Issue: 2, pp. 873-811, Mar. 2008.
[15] W. C. Pao and Y. F. Chen, “Reduced Complexity Subcarrier Allocation Schemes for DFT-Precoded OFDMA Uplink System”. IEEE Trans. Wireless Communications, Vol. 9, NO. 9, September 2010.
[16] P. Parida and S. Sekhar Das, “Power allocation in OFDM based NOMA systems: A DC programming approach,” IEEE Globecom Workshops, pp. 1026-1031, Dec. 2014.
[17] W.Cai; C.Chen; L.Bai; Y.Jin; J.Choi, “Subcarrier and power allocation scheme for downlink OFDM-NOMA systems” IET Signal Processing, 2017, pp. 51-58.
[18] Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” IEEE PIMRC, pp. 611-615, Sept. 2013.
[19] W. H. Hsueh and Y.F. Chen, “Resource Allocation for NOMA in Multiuser Multicarrier Systems,” IEEE Conferences, pp. 1626-1629, 2017.
[20] J.M. Torrance and L. Hanzo, “Optimisation of switching levels for adaptive modulation in slow Rayleigh fading,” Electronics Letters, Vol. 32, Issue: 13, pp. 1167-1169, Jun. 1996.
[21] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems, “IEEE Global Telecommunication Conference,” vol.6, pp.3287-3291, Nov. 2001.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2018-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明