博碩士論文 105553031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:75.101.220.230
姓名 葉朕旗(Chen-Chi Yeh)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石英元件的三項重要參數為頻率、精確度和尺寸大小,其中頻率穩定性為最基本的關鍵特性,常作為電子通訊設備工作穩定度的核心。電極為影響頻率的重要條件,除此之外,石英諧振器在溫度變化下需具有高穩定度,因此本研究以石英諧振器電極尺寸變化探討在特定溫度範圍內對電性及性能的影響。石英諧振器製程利用遮罩濺鍍電極膜對稱於石英晶片兩側,再以導電膠將晶片與陶瓷基板黏合和導通,並將金屬蓋板和陶瓷基座焊封。實驗條件基準利用有限元素分析方法計算,以電極尺寸X 、Z 方向為測試條件變數進行實驗。利用溫度測試系統量測諧振器對溫度效應的特性,並進行頻率穩定性的分析。
結果顯示,在溫測頻率曲線方面,電極尺寸Z、X 方向變化並未有明顯影響。在溫測電阻值和擾動方面,有異常的電阻值和擾動在高溫區域產生,電極Z 方向縮短比X 方向縮短的電阻值和擾動溫域變化來得劇烈,且電極尺寸Z 方向縮短達0.63 mm 時電阻值和擾動正常,電極尺寸Z 方向縮短為0.59 mm 時,則電阻值和擾動異常的溫度區域會在低溫發生。研究結果顯示,調整電極尺寸可以有效改變頻率擾動之發生溫度,適當的調整電極尺寸將可避免工作溫度範圍中異常擾動訊號產生。
摘要(英) The three important parameters of quartz components are frequency, accuracy, and dimensions. Frequency stability is the most basic key characteristic and is usually the core of the operational stability of electronic communication equipment. The electrode is an important factor that affectsing the frequency. In addition, the quartz resonator needs to have high stability under temperature change. Therefore, this study investigates the effects of electrode size on the electrical properties of the quartz resonator in a specific temperature range. The quartz resonator manufacture process uses sputtering to deposit the electrode film symmetrically on both sides of the quartz chip though a mask. Then, adheres the quartz chip to the ceramic substrate with a conductive paste. Finally, seals the metal cover and the ceramic base. The standard conditions of the experiments were calculated by the finite element analysis method and the electrode size in the X and Z directions were chosen as the main test variables. The experiments were carried out using the temperature test system to measure the characteristics of the resonator under temperature change and analyze its frequency stability.
The results show that in the temperature dependent frequency curve, the changes in the Z and X directions of the electrode have no significant difference. In the resistance and frequency disturbance measurements, abnormal resistance values and frequency disturbances occur in the high temperature regions, and become more significant in the Z direction shortening than in the X direction shortening cases. The resistance value and frequency disturbance fitting error are normal when the electrode size is shortened by 0.63 mm in the Z direction, and are abnormal at a low temperature when the electrode is shortened to 0.59 mm in the Z direction. The results show that adjusting the electrode size can effectively change the temperature at which of the frequency disturbance occurs. Appropriate adjustment of the electrode size will avoid the occurrence of abnormal frequency signals in the operating temperature range.
關鍵字(中) ★ 石英諧振器
★ 頻率擾動
★ 溫度效應
關鍵字(英) ★ quartz resonator
★ frequency disturbance
★ temperature effect
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 文獻回顧 4
第二章 石英諧振器基本原理 6
2.1 石英諧振器定義 6
2.2 石英晶片振動原理 8
2.3 石英諧振器組成 12
2.4 石英諧振器製程 16
2.5 石英諧振器頻率與溫度關係 18
第三章 研究方法 21
3.1 研究架構 21
3.2 實驗環境 21
3.3 實驗步驟 25
3.4 電極尺寸模擬 33
第四章 石英諧振器溫度測試分析與結果 35
4.1 電極面尺寸變化頻率測試結果 36
4.2 電極面尺寸變化電阻值測試結果 42
4.3 電極面尺寸頻率擾動測試結果 48
4.4 電極面尺寸變化測試比較結果 54
第五章 結論與建議 55
5.1 結論 55
5.2 未來方向與建議 56
參考文獻 57
參考文獻 [1] 岡野庄太郎 著,頻率控制石英水晶製品,顏森銅 譯,漢光文化,台北,1998。
[2] 林萬興,“全球石英元件產業結構分析與台灣企業成長策略”,國立台灣科技大學管理研究所,碩士論文,2005。
[3] S.Y. Pao, “A Theoretical and Experimental Study of Advanced AT-cut Quartz and Piezoelectric Thin Film Resonator”, National Taiwan University, Doctoral Dissertation, 2009.
[4] J. Vig, “Quarts Crystal Resonators and Oscillators for Frequency Control and Timing Applications—A tutorial,” IEEE UFFC
[5] R.D. Mindlin, “Thickness-Shear and Flexural Vibration of Crystal Plates”, Journal of Applied Physics, Vol. 22, No. 3, 1951.
[6] P. C. Y. Lee and R. Huang, “Mechanical Effects of Electrodes on the Vibrations of Quartz Crystal Plates,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, No. 5, 2002.
[7] R.D. Mindlin, “Forced Thickness-Shear and Flexural Vibration of Crystal Plates”, Journal of Applied Physics, Vol. 23, No. 1, 1952.
[8] R.D. Mindlin and M. Forray, “Thickness-Shear and Flexural Vibrations of Contoured Crystal Plates”, Journal of Applied Physics, Vol. 25, No. 1, 1954.
[9] R.D. Mindlin and H. Deresiewicz, “Thickness-Shear Vibrations of Piezoelectric Crystal Plates with Incomplete Electrodes”, Journal of Applied Physics, Vol. 25, No. 1, 1954.
[10] R.D. Mindlin and H. Deresiewicz, “Suppression of Overtones of Thickness-Shear and Flexural Vibrations of Crystal Plates”, Journal of Applied Physics, Vol. 25, No. 1, 1954.
[11] R.D. Mindlin and H. Deresiewicz, “Thickness-Shear and Flexural Vibrations of Rectangular Crystal Plates”, Journal of Applied Physics, Vol. 26, No. 12, 1955.
[12] R.D. Mindlin, “High Frequency Vibrations of Crystal Plates”, Quarterly of Applied Mathematics, Vol. XIX, No. 1, 1961.
[13] R.D. Mindlin and D.C. Gazis, “Strong Resonances of Rectangular AT-cut Quartz Plates”, Proceedings of the Fourth U.S. National Congress of Applied Mechanics, 1962.
[14] R.D. Mindlin, “Bechmann’s Number for Harmonic Overtones of Thickness/Twist Vibrations of Rotated-Y-cut Quartz Plates”, The Journal of the Acoustical Society of America, Vol. 41, No. 4, 1967.
[15] R.D. Mindlin and W.J. Spencer, “Anharmonic, Thickness-Twist Overtones of Thickness-Shear and Flexural Vibrations of Rectangular, AT-cut Quartz Plates”, The Journal of the Acoustical Society of America, Vol. 42, No. 6, 1967.
[16] R.D. Mindlin, “Thickness-Twist Vibrations of a Quartz Strip”, Int. J. Solids Structures, Vol. 7, 1971.
[17] R.D. Mindlin and W.J. Spencer, “Optimum Sizes and Shapes of Electrodes for Quartz Resonator”, The Journal of the Acoustical Society of America, Vol. 43, No. 6, 1968.
[18] R.D. Mindlin, “Coupled Piezoelectric Vibrations of Quartz Plates”, Int. J. Solids Structures, Vol. 10, 1974.
[19] R.D. Mindlin and P.C.Y. Lee, “Thickness-Shear and Flexural Vibration of Partially Plated, Crystal Plates”, Int. J. Solids Structures, Vol. 2, 1966.
[20] 陳聖詠,行動通訊與傳輸網路,第二版,全華圖書,2014。
[21] 張沛霖、鍾維烈等, 壓電材料與器件物理。山東科學技術出版社, 1996。
[22] Jauch ,“Quartz Crystal Theory”,2018,取自:http://www.ab4oj.com/dl/misc/jauch_quartz_xtal_theory.pdf。
[23] 陳裕賢,無線網路與行動計算,全華圖書,2014。
[24] 林志遠,“電子產品當中不可或缺的時脈元件”,2011,取自:http://www.ctimes.com.tw/download/201103/24/02_%B9q%A4l%B2%A3%AB~%B7%ED%A4%A4%A4%A3%A5i%A9%CE%AF%CA%AA%BA%AE%C9%AF%DF%A4%B8%A5%F3.pdf。
[25] 鮑世勇,“壓電體振動-座標旋轉與張量”,TXC內部資料,2016。
[26] 鮑世勇,“壓電體震動-晶片尺寸設計”,TXC內部資料,2016。
[27] 彭子修,“電極短邊計算”,TXC內部資料,2017。
[28] Darken Lee,“石英晶棒簡介”,TXC內部資料,2010。
[29] 王敏和,“BLK & Mask Size Selection and Quartz Blank Simulation”, TXC內部資料,2009。
[30] 三生電子株式会社,“TTS100溫度測試系統”,2018,取自:http://www.sanseidenshi.co.jp/。
[31] 葉朕旗,“晶片搭載分析報告”,TXC內部資料,2012。
[32] AVIO,“焊接條件設定原理報告”,TXC內部資料,2014。
指導教授 陳永芳 洪銘聰(Yung-Fang Chen M-T Hung) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明