博碩士論文 105581001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:18.219.103.183
姓名 盧登峰(Deng-Fong Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高壓半導體元件之功率電路設計論
(Power circuit design of high-voltage semiconductor components)
相關論文
★ 應用標準化測試轉換為Z-score的晶圓 非系統性錯誤分析★ 空間隨機樣態分類器的模型精化
★ 良率和隨機均勻性檢定在晶圓圖分析中的應用★ 使用返馳式轉換器實現恆定電壓快速充電
★ 功率型運算放大器積體電路設計★ 無電平轉移的高壓雙N型半橋驅動
★ 化合物半導體元件設計零電壓切換諧振電路★ 半橋氮化鎵驅動電路和功率電晶體積體化設計和其降壓器應用
★ 用於高壓積體電路佈局最佳化的三階B*-Trees★ 高速空乏型氮化鎵功率元件參數驗證
★ 基於高壓製程的高速位準轉換器設計★ 應用於都卜勒超音波系統之 轉導放大器積體電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-3-11以後開放)
摘要(中) 包絡跟踪(ET)技術為具有高峰均比(PAR)信號的功率放大器(PA)提供了實現高效率的潛力。低失真,高效率和寬帶寬的包絡放大器是廣泛應用於包絡跟踪的關鍵組件。
本文介紹了一種用於包絡放大器的線性輔助切換式降壓轉換器的設計。為了有效利用降壓轉換器的高效率和線性放大器的寬帶寬能力,在這項研究中採用了這兩種電路的並聯組合。提出了一種新穎的電流檢測恆定導通時間(COT)控制器來協調這種混合電源。這種組合主要使切換式轉換器能夠高效地提供PA所需的平均功率,而寬帶線性放大器則提供了廣泛的動態電壓。該技術提高了包絡放大器的效率,特別是對於需要具有較高帶寬信號的高PAR的應用。
使用LTE下行鏈路信號,包絡放大器的測量結果表明,輸出功率為10 W時,效率約為77%。通過使用GaN PA演示了整個ET系統。對於具有20 MHz帶寬和PAR為8.0 dB的LTE調製信號,在5 W的平均輸出功率和10.1 dB的增益下,放大器的測量平均功率增加,效率達到45%以上。在20 MHz的偏移頻率下,相鄰通道功率比為-48 dBc時,測得的歸一化RMS誤差低於2.1%。
摘要(英) Envelope tracking (ET) technology provides the potential for achieving high efficiency in power amplifiers (PAs) with high peak-to-average ratio (PAR) signals. Envelope amplifiers with high fidelity, high efficiency, and wide bandwidth are critical components for the widespread application of envelope tracking.
This paper presents the design of a linear-assisted switching buck converter for use in an envelope amplifier. To effectively leverage the high efficiency of buck converters and the wide bandwidth capabilities of linear amplifiers, a parallel combination of these two devices is employed in this work. A novel current-sense constant-on-time (COT) controller is proposed to coordinate this hybrid power supply. The combination mainly enables the switching converter to provide the average power required by the PA with high efficiency, while the wideband linear amplifier provides a wide range of dynamic voltages. The technique improves the efficiency of the envelope amplifier, especially for applications requiring high PAR with wider bandwidth signals.
Measurement of the envelope amplifier showed an efficiency of approximately 77 % with 10 W output power using LTE downlink signals. The overall ET system was demonstrated by using a GaN PA. The measured average power-added efficiency of the amplifier reached above 45 % for an LTE modulated signal with 20 MHz bandwidth and PAR of 8.0 dB, at an average output power of 5 W and gain of 10.1 dB. The measured normalized RMS error is below 2.1% with adjacent channel leakage ratio of -48 dBc at an offset frequency of 20 MHz.
關鍵字(中) ★ 功率電路
★ 高壓半導體元件
關鍵字(英) ★ Power circuit
★ high-voltage semiconductor components
論文目次 摘要 i
Abstract ii
致謝 iii
Contents iv
Figure Captions vi
Table Captions vii
Chapter 1 Introduction 1
1-1 Research Background 1
1-2 Literature Review 2
1-3 Thesis Organization 5
Chapter 2 Gate drive circuit architecture and analysis 7
2-1 Low-side driver circuit 7
2-2 High-side driver circuit 7
2-3 Hard-switching 9
2-4 Soft-switching 10
2-5 Loss analysis 11
Chapter 3 Linear-assisted Switching Buck Converter Design verification and application 15
3-1 Synchronous control principle and operation of buck converter 15
3-2 Controller Design Considerations for Optimal Efficiency 17
3-3 Performance Comparisons between the Hysteretic and COT Controller 23
3-4 Design of Current-sense COT Controller 28
Chapter 4 Circuit Implementation and Measurement Results 31
4-1 EA Implementation and Test 31
4-2 ET system test 37
Chapter 5 Conclusion 43
Reference 44
參考文獻 [ 1 ] CMoney , 受惠 5G 建設浪潮!「小型基地台」市場規模將在 5 年後翻揚 3 倍。2019年8月21日,取自https://www.cmoney.tw/notes/note-detail.aspx?nid=175632
[ 2 ] S. C. Cripps, “RF Power Amplifiers for Wireless Communications,” Second Edition (Artech House Microwave Library (Hardcover)), Norwood, MA, USA: Artech, House, Inc., 2006.
[ 3 ] B. Baker and R. Campbell, “A Linear High Efficiency Doherty Amplifier with 40 dBm Saturated Output Power using GaN on SiC HEMT devices, ” IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), 2015 pp. 1-3.
[ 4 ] N. Yoshimura, H. Umeta, N. Watanabe, H. Deguchi, and N. Ui, “A 2.5-2.7GHz broadband 40W GaN HEMT Doherty amplifier with higher than 45% drain efficiency for multi-band application, ” IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, 2012, pp. 53-56.
[ 5 ] M. P. VdHeijden, M. Acar, J. S. Vromans, and D. A. Calvillo-Cortes,“A 19W High-Efficiency Wide-band CMOS-GaN class-E Chireix RF Outphasing Power Amplifier, ” IEEE MTT-S International Microwave Symposium, 2011, pp. 1-4.
[ 6 ] O. T. Amiri and A. Koukab, “A 10-W Modified LINC Power Amplifier with a Reduced-size Chireix Power Combiner, ” IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), 2014, pp. 25-27.
[ 7 ] J. Yan, C. Hsia, D. F. Kimball, and P. M. Asbeck, “Design of a 4-W Envelope Tracking Power Amplifier With More Than One Octave Carrier Bandwidth, ” IEEE Journal of Solid-State Circuits, Vol. 47, Iss. 10, 2012, pp. 2298-2308.
[ 8 ]D. Kimball, J. Jeong, C. Hsia, P. Draxler, S.Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High-efficiency Envelope Tracking W-CDMA Base-station Amplifier using GaN HFETS, ” IEEE Trans. Microw. Theory Tech., Vol. 54, Nov., 2006, pp. 3848 3856.
[ 9 ]C. Hsia, D. Kimball, P. Draxler, J. J. Yan, J.Kinney, E. Toulouse, J. Wood, and P. M. Asbeck, “High Efficiency Envelope Tracking Overdriven ClassA LDMOS Power Amplifier for Base-station Applications, ” IEEE Power Amp. Wireless Commun. Top. Symp. , Orlando, FL, Jan. 2008.
[ 10 ]J. Jeong, D. Kimball, M. Kwak, P. Draxler, C. Hsia, C. Steinbeiser, T. Landon, O. Krutko, L. E. Larson, and P. M. Asbeck, “Highefficiency WCDMA envelope tracking base-station amplifier implemented with GaAs HVHBTs,” IEEE J. Solid-State Circuits, Vol. 44, No. 10, Oct., 2009, pp. 2629-2639.
[ 11 ]Z. Yusoff, F. M. Annuar, F. Kung, S. J. Hashim, J. Lees, and S. C. Cripps, “ The effect of tracking generator efficiency to overall RF power amplifier system efficiency, ” IEEE International Conference on semiconductor Electronics (ICSE), 2016, pp. 344-347.
[ 12 ]J. Jeong, D. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. M. Asbeck, “Modeling and design of RF amplifiers for envelope tracking WCDMA base-station applications, ” IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, Sept., 2009, pp. 2148-2159.
[ 13 ]M. Olavsbraten and D. Gecan, “Bandwidth Reduction for Supply Modulated RF PAs Using Power Envelope Tracking, ” IEEE Microwave and Wireless Components Letters, Vol. 27, Iss. 4, 2017, pp. 374-376.
[ 14 ]R. Wu, Y. T. Liu, J. Lopez, C. Schecht, Y. Li, and D. Y. C. Lie,“High-Efficiency Silicon-Based Envelope-Tracking Power Amplifier Design With Envelope Shaping for Broadband Wireless Applications, ” IEEE Journal of Solid-State Circuits, Vol. 48, Iss. 9, 2013, pp. 2030-2040.
[ 15 ]J. Kim, D. Kim, Y. Cho, D. Kang, and B. Kim,“Envelope-tracking Power Amplifier with Enhanced back-off Efficiency using Average Switch Current Control of Supply Modulator, ” Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 435- 437.
[ 16 ]M. Hassan, P. M. Asbeck, and L. E. Larson, “A CMOS DualSwitching Power-Supply Modulator with 8% Efficiency Improvement for 20MHz LTE Envelope Tracking RF Power Amplifiers,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, 17-21 Feb. 2013, pp. 366-367.
[ 17 ]Y. Wang, X. Ruan, Q. Jin, Y. Leng, F. Meng, and X. W. Zhu, “QuasiInterleaved Current Control for Switch-Linear Hybrid EnvelopeTracking Power Supply,” IEEE Transactions on Power Electronics, Vol. 33, Iss. 6, 2018, pp. 5415-5425.
[ 18 ]W. T. Tsai, C. Y. Liou, Z. A. Peng, and S. G. Mao, “Wide-Bandwidth and High-Linearity Envelope- Tracking Front-End Module for LTEA Carrier Aggregation Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 65 , Iss. 11, 2017, pp.4657-4668.
[ 19 ]F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11g WLAN Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54 , Iss. 12, 2016, pp.4086-4099.
[ 20 ]C. Hsia, D. F. Kimball, S. Lanfranco, and P. M. Asbeck, “Wideband High Efficiency Digitally-Assisted Envelope Amplifier with Dual Switching Stages for Radio Base-Station Envelope Tracking Power Amplifiers,” IEEE MTT-S International Microwave Symposium, 23-28 May 2010, pp. 672 675.
[ 21 ]J. T. Stauth, and S. R. Sanders, “Optimum Biasing for Parallel Hybrid Switching-Linear Regulators,” IEEE Transactions on Power Electronics, Vol. 22, Iss. 5, 2007,
pp. 1978-1985.
[ 22 ]M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “Effect of envelope amplifier nonlinearities on the output spectrum of Envelope Tracking Power amplifiers, ”IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2012, pp. 187-190.
[ 23 ]M. Kwak, D. F. Kimball, C. Presti, A. Scuderi, C. Santagati, J. Yan, P. M. Asbeck, and L. E. Larson, “Design of a Wideband HighVoltage High-Efficiency BiCMOS Envelope Amplifier for MicroBase-Station RF Power Amplifiers, ” IEEE Transactions on Microwave Theory and Techniques, Vol. 60, Iss. 6, 2012, pp. 1850-1861.
[ 24 ]Y. C. Lin, C. J. Chen, D. Chen, and B. Wang, “A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters,” IEEE Trans. Power Electron., vol. 27, no. 10, Oct., 2012, pp. 4301-4310.
[ 25 ]L. Kong, D. Chen, S. F. Hsiao, C. F. Nien, C. J. Chen, and K. F. Li, “A Novel Adaptive-Ramp Ripple-Based Constant On-Time Buck Converter for Stability and Transient Optimization in Wide Operation Range,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, Iss. 3, 2018, pp. 1314-1324.
[ 26 ]Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, Apr., 2010, pp. 829-838.
[ 27 ]H. C. Lin, B. C. Fung, and T. Y. Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” Proc. IEEE Int. Symp. Circuits Syst., 2008, pp. 2602-2605.
[ 28 ] CGH40025, “CGH40025 Rev 4.0 datasheet,” Cree, Inc., 2015.
[ 29 ] Y. Leng, X. Ruan, Q. Jin, and Y. Wang, “Current Control Strategies for Parallel-Form Switch-Linear Hybrid Envelope Tracking Power Supply with Two Switched-Mode Converters to Achieve Optimal Power Allocation, ” IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018. (Early Access)
[30] Y. Komatsuzaki, S. Lanfranco, T. Kolmonen, O. Piirainen, J. K. Tan skanen, S. Sakata, R.Ma, S. Shinjo, K. Yamanaka, P. Asbeck, “A High Efficiency 3.6-4.0 GHz Envelope-Tracking Power Amplifier Using GaN Soft-Switching Buck-Converter,” IEEE/MTT-S International Microwave Symposium, 2018, pp. 465 - 468.
[31] Sanjaya Maniktala , “Switching Power Supplies A to Z”
[32] Deng-Fong LU, Chin HSIA, “Design of a Wideband Constant-on-Time Control Envelope Amplifier for Wireless Basestation Envelope Tracking Power Amplifiers.” IEICE Transactions on Electronics, vol. E102-C NO.10, 2019, pp. 707 - 716.
指導教授 夏勤(Chin Hsia) 審核日期 2021-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明