博碩士論文 105581010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.206.14.36
姓名 陳世剛(Shih-Gang Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
(Development of Wide Speed Range Controllers for High-Performance Synchronous Reluctance Motor Drive)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,同步磁阻馬達(Synchronous Reluctance Motor, SynRM)由於具備機械結構簡單、堅固耐用和低成本等特性,已經成功且廣泛地被設計並實現在各種應用之中。由於同步磁阻馬達不需要永磁材料(Permanent Magnetic Material),鼠籠(Squirrel Cage)及激磁線圈(Excitation Winding),所以轉子會比感應馬達和永磁同步馬達的轉子便宜,因此同步磁阻馬達成為可替代感應馬達和永磁同步馬達的另一選項。此外,由於同步磁阻馬達之轉子凸極(Saliency)較大且無退磁(Demagnetization)等問題,所以非常適用於高速應用,像是電動車、油電混合車和牽引應用等。有鑑於此,本論文之目標即為發展以數位訊號處理器(Digital Signal Processor, DSP)為基礎並具寬速度範圍操作(Wide Speed Range Operation)之同步磁阻馬達驅動系統。
本論文首先發展以數位訊號處理器TMS320F28075 為基礎之控制系統,並詳述同步磁阻馬達驅動系統之架構,再進行同步磁阻馬達動態模型、有限元素分析和實驗設置之描述。另外,由於未模式化動態的存在及磁飽和現象,同步磁阻馬達驅動系統可視為一高度非線性且時變的系統,因此,各種非線性速度控制器,像是結合計算電流控制(Computed Current Control)和適應控制(Adaptive Control)優點之適應性計算電流(Adaptive Computed Current, ACC)速度控制器;結合互補式滑動模態控制 (Complementary Sliding Mode Control)和適應控制優點之適應性互補式滑動模態 (Adaptive Complementary Sliding Mode, ACSM) 速度控制器,已提出用於控制同步磁阻馬達的轉速,並具備可調節馬達速度之強健性。此外,為了在定轉矩區域內能節省驅動同步磁阻馬達的能源,採用了智慧型每安培最大轉矩(Maximum Torque per Ampere, MTPA)追隨控制器和智慧型最大功率因數(Maximum Power Factor, MPF)搜尋控制器,並利用無模型控制(Model-Free Control)方法如遞迴式勒壤得模糊類神經網路(Recurrent Legendre Fuzzy Neural Network, RLFNN)和遞迴式切比雪夫模糊類神經網路(Recurrent Chebyshev Fuzzy Neural Network, RCFNN)…等。另外,透過新型的電壓角控制器,可以完成弱磁(Flux-Weakening, FW)和每伏特最大轉矩(Maximum Torque per Voltage, MTPV)控制來實現寬速度範圍之操作,因此,在定功率和降功率區域中,所提出之具有前饋項的電壓角控制器適用於具高度非線性之同步磁阻馬達驅動系統。更重要的是,由於目前還沒有一種更好的方法可以用來設計同步磁阻馬達的直軸電流命令,因此提出了一種線上最大功率因數控制器來實現最大功率因數和解決同步磁阻馬達的直軸電流命令設計問題。最後,根據實驗結果,所發展之高性能同步磁阻馬達驅動系統具有良好的控制性能和強健性,且可有效地應用於寬速度範圍操作。
摘要(英) In recent years, the synchronous reluctance motors (SynRMs) have been designed and adopted in many applications due to their important features such as mechanically simple, rugged structure, and low cost. Since the SynRMs do not require the permanent magnetic material, squirrel cage, and excitation winding, the rotor is potentially cheaper than both the induction motors (IMs) and permanent magnet synchronous motors (PMSMs). Therefore, SynRMs become a viable alternative to replace the IMs and PMSMs. Moreover, since the presence of large rotor saliency and no demagnetization issue, it makes SynRMs very suitable for high-speed applications, such as electric vehicles (EVs), hybrid EVs, and traction applications. For the above reasons, the purpose of this dissertation is to develop a digital signal processor (DSP)-based wide speed range operation of SynRM drive system.
At the beginning of this dissertation, the DSP-based control system using a 32-bit floating-point DSP, TMS320F28075, and the SynRM drive system are presented in detail. Then, the SynRM dynamic model, finite element analysis, and experimental setup are described. Moreover, due to the existed unmodeled dynamics and magnetic saturation phenomenon, the SynRM drive system is a highly nonlinear and time-varying system. Therefore, various nonlinear speed controllers such as adaptive computed current (ACC) speed controller, which combines the merits of the computed current control and adaptive control and adaptive complementary sliding mode (ACSM) speed controller, which combines the merits of complementary sliding mode control and adaptive control, have been proposed to control the rotor speed of the SynRM for the regulation of motor speed with robustness. Furthermore, in order to save the energy of SynRM drive in the constant torque region, the intelligent maximum torque per ampere (MTPA) tracking controller and intelligent maximum power factor (MPF) searching controller using the model-free control methods such as recurrent Legendre fuzzy neural network (RLFNN) and recurrent Chebyshev fuzzy neural network (RCFNN), are proposed in this dissertation. In addition, the flux-weakening (FW) and maximum torque per voltage (MTPV) can be carried out to achieve the wide speed range operation through a novel voltage angle controller. Therefore, the proposed voltage angle controller which possesses a feedforward term is suitable for the highly nonlinear SynRM drive system in the operation of constant power and reduced power regions. More importantly, since currently there is no superior way to design the d-axis current command of the SynRM drive, an online MPF controller is proposed to achieve the MPF and solve the problem of d-axis current command design of SynRM drive. Finally, according to the experimental results, the developed high-performance SynRM drive system possesses good control performance and robustness, and can apply to the wide speed range operation effectively.
關鍵字(中) ★ 同步磁阻馬達
★ 適應性計算電流控制
★ 適應性互補式滑動模態控制
★ 每安培最大轉矩
★ 最大功率因數
★ 每伏特最大轉矩
關鍵字(英) ★ Synchronous reluctance motor
★ adaptive computed current control
★ adaptive complementary sliding mode control
★ maximum torque per ampere
★ maximum power factor
★ maximum torque per voltage
論文目次 摘 要 I
Abstract III
Acronyms V
誌 謝 VIII
Contents IX
List of Figures XI
List of Tables XX
Chapter 1 INTRODUCTION 1
1.1 Historical Background 1
1.2 Literature Review 6
1.3 Motivations 12
1.4 Organization 14
Chapter 2 DSP-BASED CONTROL SYSTEM, FEA OF SYNRM AND SYNRM DRIVE SYSTEM. 16
2.1 Overview 16
2.2 DSP-based Control System 17
2.2.1 Introduction of DSP TMS320F28075 17
2.2.2 DSP 28075 Control, I/O Extension and Encoder Interface Board 18
2.3 FEA of SynRM 21
2.3.1 Cross-Saturation and Saturation Analyses 23
2.3.2 Inductance and MTPA Analyses 26
2.4 SynRM Drive System 27
2.4.1 SynRM Control System 28
2.4.2 Experimental Setup 30
Chapter 3 INTELLIGENT MTPA TRACKING CONTROL OF SYNRM USING RLFNN 32
3.1 Overview 32
3.2 Modeling of SynRM Drive 33
3.3 TMTPA Control System 34
3.4 Intelligent MTPA Tracking Control System 38
3.4.1 ACC Speed Controller 38
3.4.2 Intelligent MTPA Tracking Controller 41
3.4.3 RLFNN Controller 47
3.4.4 Online Learning Algorithm 50
3.4.5 Convergence Analysis 53
3.5 Experimental Results 54
3.6 Summary 67
Chapter 4 INTELLIGENT MPF SEARCHING CONTROL USING RCFNN CURRENT ANGLE CONTROLLER 69
4.1 Overview 69
4.2 TMPFC System 70
4.3 Intelligent MPF Searching Control System 73
4.3.1 PI-Based Stator Resistance Estimator 73
4.3.2 Stator Flux Estimator 73
4.3.3 Intelligent MPF Searching Controller 74
4.3.4 RCFNN Current Angle Controller 77
4.3.5 Online Learning Algorithm for RCFNN 80
4.3.6 Convergence Analysis 83
4.4 Experimental Results 85
4.5 Summary 102
Chapter 5 ACSM CONTROL OF SYNRM WITH MPF, FW, AND MTPV 103
5.1 Overview 103
5.2 Conventional FW Control System 104
5.3 Intelligent MPF Searching Control System 107
5.3.1 ACSM Speed Controller 111
5.3.2 Mode Selector 114
5.3.3 Mode I-Current Control 117
5.3.4 Mode II-Voltage Control 119
5.4 Experimental Results 122
5.5 Summary 140
Chapter 6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 142
6.1 Conclusions 142
6.2 Suggestions for Future Works 143
Reference 144
VITA 153
參考文獻 [1] P. Waide and C. U. Brunner, Energy-Efficiency Policy Opportunities for Electric Motor-Drive Systems. Paris, France: International Energy Agency, 2011.
[2] G. K. Esen and E. Özdemir, “A new field test method for determining energy efficiency of induction motor,” IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3170-3179, Dec. 2017.
[3] A. T. D. Almeida, “Electric motors and variable speed drives efficiency – Adjusting MEPS to technology developments,” Motor Summit Zurich, 11/12, Oct. 2016.
[4] Rotating Electrical Machines—Part 30-1: Efficiency Classes of Line perated AC Motors (IE code) Machines, no. Edition 1.0, document IEC 60034-30-1, Int. Electrotech. Commission, 2014.
[5] M. Doppelbauer, “Update on IEC motor and converter standards,” 6th Int. Motor Summit for Energy Efficiency powered by Impact Energy, Oct. 2016.
[6] M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644–3657, Sep. 2013.
[7] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[8] L. Ortombina, F. Tinazzi, and M. Zigliotto, “Magnetic modelling of synchronous reluctance and internal permanent magnet motors using radial basis function networks”, IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1140-1148, Feb. 2018.
[9] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[10] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[11] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762–4769, Nov./ Dec. 2016.
[12] O. Payza, Y. Demir, and M. Aydin, “Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application,” IEEE Trans. Magn., vol. 54, no. 11, Nov. 2018.
[13] P. Niazi, “Permanent magnet assisted synchronous reluctance motor design and performance improvement,” Ph.D. dissertation, Texas A&M Univ., College Station, TX, 2005.
[14] H. C. Liu and J. Lee, “Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3104–3114, Apr. 2018.
[15] F. Oliveira and A. Ukil, “Comparative performance analysis of induction & synchronous reluctance motors in chiller systems for energy efficient buildings”, IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4384–4393, Aug. 2019.
[16] J. Baek, S. S. R. Bonthu, and S. Choi, “Design of five-phase permanent magnet assisted synchronous reluctance motor for low output torque ripple applications,” IET Electr. Power Appl., vol. 10, no. 5, pp. 347–355, 2016.
[17] X. Zhang and G. H. B. Foo, ‘‘Overmodulation of constant-switching frequency-based DTC for reluctance synchronous motors incorporating field-weakening operation,’’ IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 37–47, Jan. 2019.
[18] M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Combined star-delta windings to improve synchronous reluctance motor performance,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1479–1487, Dec. 2016.
[19] R. Morales-Caporal and M. Pacas, “A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1161–1167, Apr. 2007.
[20] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[21] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[22] C. Oprea, A. Dziechciarz, and C. Martis, “Comparative analysis of different synchronous reluctance motor topologies,” in Proc. 2015 IEEE 15th Int. Conf. Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1904–1909.
[23] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450–456, Jun. 2010.
[24] S. Cai, J. Shen, H. Hao, and M. Jin, “Design methods of transversally laminated synchronous reluctance machines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164–173, Jul. 2017.
[25] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017.
[26] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[27] H. Pairo and A. Shoulaie, “Operating region and maximum attainable speed of energy-efficient control methods of interior permanent-magnet synchronous motors,” IET Power Electron., vol. 10, no. 5, pp. 555–567, Apr. 2017.
[28] S. Piriienko, U. Ammann, M. Neuburger, F. Bertele, T. Röser, A. Balakhontsev, N. Neuberger, and P. W. Cheng “Influence of the control strategy on the efficiency of SynRM based small-scale wind generators,” 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, 2019, pp. 280-285.
[29] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115–121, Jan./Feb. 2011.
[30] S. Jung, J. Hong, and K. Nam, “Current minimizing torque control of the IPMSM using Ferrari’s method,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5603–5617, Dec. 2013.
[31] T. H. Liu, Y. Chen, M. J. Wu, and B. C. Dai, “Adaptive controller for an MTPA IPMSM drive system without using a high-frequency sinusoidal generator,” IET J. Eng., vol. 2017, no. 2, pp. 13–25, 2017.
[32] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[33] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[34] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan, and E. Firmansyah, “Implementation of online maximum efficiency tracking control for a dual motor drive system,” IET Elect. Power Appl., vol. 9, no. 7, pp. 449–458, Jul. 2015.
[35] T. H. Liu, Y. Chen, S. K. Tseng, and M. J. Wu, “Implementation of maximum efficiency control for matrix-converter-based interior permanent magnet synchronous motor drive systems,” IET J. Eng., vol. 2018, no. 5, pp. 296–303, 2018.
[36] F. Fernandez-Bernal, A. Garcia-Cerrada, and R. Faure, “Efficient control of reluctance synchronous machines,” in Proc. 24th Annu. Conf. IEEE IECON, vol. 2, pp. 923–928, Aug. 31–Sep. 4, 1998.
[37] J. Ahn, S. Lim, K. Kim, J. Lee, J. Choi, S. Kim, and J. Hong, “Field weakening control of synchronous reluctance motor for electric power steering,” IET Elect. Power Appl., vol. 1, no. 4, pp. 565–570, Jul. 2007.
[38] Y. Chen et al., “Improved flux-weakening control of IPMSMs based on torque feedforward technique,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10970–10978, Dec. 2018.
[39] P. Y. Lin, W. T. Lee, S. W. Chen, J. C. Hwang, and Y. S. Lai, “Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor,” in Proc. IECON, Nov. 2014, pp. 668–674.
[40] P. Y. Lin and Y. S. Lai, “Voltage control technique for the extension of DC-link voltage utilization of finite-speed SPMSM drives,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3392–3402, Sep. 2012.
[41] D. Stojan, D. Drevensek, Z. Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390–2401, Nov./Dec. 2012.
[42] Z. Zhang, C. Wang, M. Zhou, and X. You, “Flux-weakening in PMSM drives: Analysis of voltage angle control and the single current controller design,” IEEE J. Emerging Sel. Topics Power Electron., vol. 7, no. 1, pp. 437–445, Mar. 2019.
[43] T. S. Kwon and S. K. Sul, “Novel antiwindup of a current regulator of a surface-mounted permanent-magnet motor for flux-weakening control,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1293–1300, Sep./Oct. 2006.
[44] W. Xu, M. M. Ismail, Y. Liu, and M. R. Islam, “Parameter optimization of adaptive flux-weakening strategy for permanent-magnet synchronous motor drives based on particle swarm algorithm,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12128–12140, Dec. 2019.
[45] K. Hayakawa, A. Matsumoto, and M. Hasegawa, “Control performance improvement in feedback-type flux-weakening control method using value of voltage saturation for SynRMs,” in Proc. 2016 18th European Conf. Power Electronics Applications, Karlsruhe, Germany, pp. 1–7.
[46] Z. Dong et al., “Operating point selected flux-weakening control of induction motor for torque-improved high-speed operation under multiple working conditions,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12011–12023, Dec. 2019.
[47] T. S. Kwon, K. Y. Choi, M. S. Kwak, and S. K. Sul, “Novel flux weakening control of an IPMSM for quasi-six-step operation,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1722–1731, Nov./Dec. 2008.
[48] Y. C. Kwon, S. Kim, and S. K. Sul, “Six-step operation of PMSM with instantaneous current control,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2614–2625, Jul./Aug. 2014.
[49] S. Y. Jung, C. C. Mi, and K. Nam, “Torque control of IPMSM in the field-weakening region with improved dc-link voltage utilization,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3380–3387, Jun. 2015.
[50] J. Liu, W. Zhang, F. Xiao, and S. Gao, “Six-step mode control of IPMSM for railway vehicle traction eliminating the DC offset in input current,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8981–8993, Sep. 2019.
[51] J. Park, S. Jung, and J. I. Ha, “Variable time step control for six-step operation in surface-mounted permanent magnet machine drives,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1501–1513, Feb. 2018.
[52] T. Miyajima, H. Fujimoto, and M. Fujitsuna, “A precise model-based design of voltage phase controller for IPMSM,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5655–5664, Dec. 2013.
[53] M. S. Huang, K. C. Chen, C. H, Chen, Z. F. Li, and S. W. Hung, “Torque control in constant power region for IPMSM under six-step voltage operation,” IET Elect. Power Appl., vol. 13, no. 2, pp. 181–189, Feb. 2019.
[54] J. Fei and Y. Chu, “Double hidden layer recurrent neural adaptive global sliding mode control of active power filter,” IEEE Trans. Power Electron., vol. 35, no. 3, pp. 3069–3084, Mar. 2020.
[55] H. Jin and X. Zhao, “Complementary sliding mode control via Elman neural network for permanent magnet linear servo system,” IEEE Access, vol. 7, pp. 82183–82193, 2019.
[56] L. Feng, M. Deng, S. Xu, and D. Huang, “Speed regulation for PMSM drives based on a novel sliding mode controller,” IEEE Access, vol. 8, pp. 63577-63584, 2020.
[57] F. F. M. El-Sousy, “Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive,” IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 1922–1936, Nov. 2013.
[58] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747–5762, Dec. 2013.
[59] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[60] J. S. Ko, J. S. Choi, K. T. Park, B. S. Park, and D. H. Chung, “Maximum torque control of SynRM drive using ALM-FNN controller,” International Conference on Control, Automation and Systems, pp. 1609-1612, 2007.
[61] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IET Electr. Power Appl., vol. 151, no. 6, pp. 711–724, Nov. 2004.
[62] T. H. Liu, H. S. Haslim, and S. K. Tseng, “Predictive controller design for a high-frequency injection sensorless synchronous reluctance drive system,” IET Electr. Power Appl., vol. 11, no. 5, pp. 902–910, May 2017.
[63] E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. Energy Conver., vol. 34, no. 2, pp. 604–612, Jun. 2019.
[64] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[65] D. Chakraborty and N. R. Pal, “Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm,” IEEE Trans. Syst. Man Cybern. B, vol. 31, pp. 391–400, Jun. 2001.
[66] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[67] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[68] S. S. Yang and C. S. Tseng, “An orthogonal neural network for function approximation,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 5, pp. 779–783, Oct. 1996.
[69] J. C. Patra and C. Bornand, “Nonlinear dynamic system identification using Legendre neural network,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, pp. 1–7, 2010.
[70] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[71] C. H. Lin, “Novel adaptive modified recurrent Legendre neural network control for a PMSM servo-driven electric scooter with V-belt continuously variable transmission system dynamics,” Trans. of the Institute of Meas. and Control, vol. 37, no. 10, pp. 1181–1196, 2015.
[72] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 310–321, Feb. 2013.
[73] C. H. Chen, C. J. Lin, and C. T. Lin, “A functional-link-based neuro-fuzzy network for nonlinear system control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1362–1378, Oct. 2008.
[74] B. Y. Vyas, B. Das, and R. P. Maheshwari, “Improved fault classification in series compensated transmission line: Comparative evaluation of Chebyshev neural network training algorithms,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1631–1642, Aug. 2016.
[75] L. Jin, Z. Huang, Y. Li, Z. Sun, H. Li, and J. Zhang, ‘‘On modified multioutput Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions,’’ IEEE Access, vol. 7, pp. 1973–1980, 2019.
[76] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[77] A. Rubio-Solis and G. Panoutsos, “Interval type-2 radial basis function neural network: A modeling framework,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 457–473, Apr. 2015.
[78] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[79] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[80] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
[81] S. Y. Chen and M. H. Song, “Energy-saving dynamic bias current control of active magnetic bearing positioning system using adaptive differential evolution,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 5, pp. 942–953, May 2019.
[82] K. H. Nam, AC Motor Control and Electric Vehicle Applications. Boca Raton, FL, USA: CRC Press, 2010.
[83] C. Lai, G. Feng, K. Mukherjee, J. Tjong, and N. Kar, “Maximum torque per ampere control for IPMSM using gradient descent algorithm based on measured speed harmonics,” IEEE Trans Ind. Informat., vol. 14, no. 4, pp. 1424–1435, Apr. 2018.
[84] M. F. Rahman, M. E. Haque, L. Tang, and L. Zhong, “Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 799–809, Aug. 2004.
[85] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York: Academic, 2002.
[86] M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Relevance of including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151–160, Jan./Feb. 2017.
[87] A. S. O. Ogunjuyigbe, A. A. Jimoh, D. V. Nicolae, and E. S. Obe, “Analysis of synchronous reluctance machine with magnetically coupled three-phase windings and reactive power compensation,” IET Electr. Power Appl., vol. 4, no. 4, pp. 291–303, Apr. 2009.
[88] M. Ferrari, N. Bianchi, and E. Fornasiero, “Analysis of rotor saturation in synchronous reluctance and PM-assisted reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 169–177, Jan. 2015.
[89] A. Balamurali, G. Feng, C. Lai, J. Tjong, and N. C. Kar, “Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement,” IEEE Trans. on Energy Conver., vol. 33, no. 4, pp. 2240–2249, Dec. 2018.
[90] Z. Yu, W. Kong, D. Li, R. Qu, and C. Gan, “Power factor analysis and maximum power factor control strategy for six-phase dc-biased vernier reluctance machines,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4643-4652, Sep./Oct. 2019.
[91] “IEEE recommended practice for electric power distribution for industrial plants,” IEEE Std 141-1993, pp.1-768, 29 Apr. 1994.
[92] J. M. Kim and S. K. Sul, “Speed control of interior permanent magnet synchronous motor drive for the flux-weakening operation,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 43–48, Jan./Feb. 1997.
[93] S. Ekanayake, R. Dutta, M. F. Rahman, and D. Xiao, ‘‘Direct torque and flux control of interior permanent magnet synchronous machine in deep flux-weakening region,’’ IET Electr. Power Appl., vol. 12, no. 1, pp. 98–105, Jan. 2018.
[94] Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 746–765, Apr. 2007.
[95] S. H. Kim, Electric Motor Control: DC, AC, and BLDC Motors. Amsterdam, Netherlands: Elsevier, 2017.
[96] Y. Huang, Z. Zhang, W. Huang, and S. Chen, “DC-link voltage regulation for wind power system by complementary sliding mode control,” IEEE Access, vol. 7, pp. 22773-22780, 2019.
[97] R. J. Wai, J. X. Yao, and J. D. Lee, ‘‘Backstepping fuzzy-neural-network control design for hybrid maglev transportation system,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 302–317, Feb. 2015.
[98] T. Matsuo and T. A. Lipo, “Field oriented control of synchronous reluctance machine,” Proceedings of IEEE Power Electronics Specialist Conference - PESC ′93, Seattle, WA, USA, 1993, pp. 425-431.
[99] X. Zhang, G. H. B. Foo, D. M. Vilathgamuwa, and D. L. Maskell, “An improved robust field-weakening algorithm for direct-torque-controlled synchronous-reluctance-motor drives,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3255–3264, May 2015.
[100] H. Hadla and S. Cruz, “Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6950–6959, Sep. 2017.
[101] R. Sepulchre, T. Devos, F. Jadot, and F. Malrait, “Antiwindup design for induction motor control in the field weakening domain,” IEEE Trans. Control Syst. Technol., vol. 21, no. 1, pp. 52–66, Jan. 2013.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明