參考文獻 |
[1] T. Palacios, U. K. Mishra, and G. K. Sujan, "GaN-Based Transistors for High-Frequency Applications," in Reference Module in Materials Science and Materials Engineering, ed: Elsevier, 2016.
[2] M. J. Rosker, J. D. Albrecht, E. Cohen, J. Hodiak, and T. Chang, "DARPA′s GaN technology thrust," in 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 1214-1217.
[3] E. Acurio, F. Crupi, N. Ronchi, B. De Jaeger, B. Bakeroot, S. Decoutere, et al., "Reliability improvements in AlGaN/GaN Schottky barrier diodes with a gated edge termination," IEEE Transactions on Electron Devices, vol. 65, pp. 1765-1770, 2018.
[4] I. C. Diallo and D. O. Demchenko, "Native Point Defects in GaN: A Hybrid-Functional Study," Physical Review Applied, vol. 6, p. 064002, 12/07/ 2016.
[5] Y. Jia, Y. Xu, K. Lu, Z. Wen, A.-D. Huang, and Y.-X. Guo, "Characterization of buffer-related current collapse by buffer potential simulation in AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 65, pp. 3169-3175, 2018.
[6] D. Bisi, M. Meneghini, C. De Santi, A. Chini, M. Dammann, P. Brueckner, et al., "Deep-level characterization in GaN HEMTs-part I: advantages and limitations of drain current transient measurements," IEEE Transactions on electron devices, vol. 60, pp. 3166-3175, 2013.
[7] C. Koller, G. Pobegen, C. Ostermaier, M. Huber, and D. Pogany, "The interplay of blocking properties with charge and potential redistribution in thin carbon-doped GaN on n-doped GaN layers," Applied Physics Letters, vol. 111, p. 032106, 2017.
[8] J. L. Lyons, A. Janotti, and C. G. Van de Walle, "Carbon impurities and the yellow luminescence in GaN," Applied Physics Letters, vol. 97, p. 152108, 2010/10/11 2010.
[9] J. Cheng, X. Yang, L. Sang, L. Guo, J. Zhang, J. Wang, et al., "Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition," Scientific reports, vol. 6, p. 23020, 2016.
[10] J.-T. Chen, I. Persson, D. Nilsson, C.-W. Hsu, J. Palisaitis, U. Forsberg, et al., "Room-temperature mobility above 2200 cm2/V· s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure," Applied Physics Letters, vol. 106, p. 251601, 2015.
[11] E. Ahmadi, H. Chalabi, S. W. Kaun, R. Shivaraman, J. S. Speck, and U. K. Mishra, "Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment," Journal of Applied Physics, vol. 116, p. 133702, 2014.
[12] R. Tülek, A. Ilgaz, S. Gökden, A. Teke, M. K. Öztürk, M. Kasap, et al., "Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures," Journal of Applied Physics, vol. 105, p. 013707, 2009.
[13] F. Kaess, S. Mita, J. Xie, P. Reddy, A. Klump, L. H. Hernandez-Balderrama, et al., "Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition," Journal of Applied Physics, vol. 120, p. 105701, 2016/09/14 2016.
[14] G. Li, A. Kusaba, P. Kempisty, M. R. Von Spakovsky, and Y. Kangawa, "CH4 Adsorption Probability on GaN (0001) and (000− 1) during Metalorganic Vapor Phase Epitaxy and Its Relationship to Carbon Contamination in the Films," Materials, 2019.
[15] D. Koleske, A. Wickenden, R. Henry, and M. Twigg, "Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN," Journal of crystal growth, vol. 242, pp. 55-69, 2002.
[16] I. S. Y.-C. L. Y.-C. L. J.-I. Chyi, "Improving the Performance of AlInN/GaN and AlInGaN/GaN HEMTs by Using a Triethylgallium-Grown Channel Layer and Barrier," in 2018 International Symposium on Growth of III-Nritride (ISGN-7), 2018.
[17] Y. Chen, I. Sanyal, and J. Chyi, "Enhanced Electrical Properties of AlInN/AlN/GaN Heterostructure using AlxGa1-xNAlyGa1-yN superlattice," in 2019 Compound Semiconductor Week (CSW), 2019, pp. 1-2.
[18] P. Reddy, S. Washiyama, F. Kaess, R. Kirste, S. Mita, R. Collazo, et al., "Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN," Journal of Applied Physics, vol. 122, p. 245702, 2017/12/28 2017.
[19] A. Kusaba, Y. Kangawa, P. Kempisty, H. Valencia, K. Shiraishi, Y. Kumagai, et al., "Thermodynamic analysis of (0001) and GaN metalorganic vapor phase epitaxy," Japanese Journal of Applied Physics, vol. 56, p. 070304, 2017.
[20] K. Sekiguchi, H. Shirakawa, Y. Yamamoto, M. Araidai, Y. Kangawa, K. Kakimoto, et al., "First-principles and thermodynamic analysis of trimethylgallium (TMG) decomposition during MOVPE growth of GaN," Journal of Crystal Growth, vol. 468, pp. 950-953, 2017.
[21] P. Kempisty, Y. Kangawa, A. Kusaba, K. Shiraishi, S. Krukowski, M. Bockowski, et al., "DFT modeling of carbon incorporation in GaN(0001) and GaN(000 1¯) metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 111, p. 141602, 2017/10/02 2017.
[22] A. Stegmüller, P. Rosenow, and R. Tonner, "A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga (C 2 H 5) 3) and tert-butylphosphine (TBP, PH 2 (t-C 4 H 9)) under MOVPE conditions," Physical Chemistry Chemical Physics, vol. 16, pp. 17018-17029, 2014.
[23] Ö. Danielsson, X. Li, L. Ojamäe, E. Janzén, H. Pedersen, and U. Forsberg, "A model for carbon incorporation from trimethyl gallium in chemical vapor deposition of gallium nitride," Journal of Materials Chemistry C, vol. 4, pp. 863-871, 2016.
[24] Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, and T. Ohachi, "A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces," Surface science, vol. 493, pp. 178-181, 2001.
[25] C. G. Van de Walle and J. Neugebauer, "First-principles calculations for defects and impurities: Applications to III-nitrides," Journal of Applied Physics, vol. 95, pp. 3851-3879, 2004/04/15 2004.
[26] S. Mita, R. Collazo, A. Rice, R. F. Dalmau, and Z. Sitar, "Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition," Journal of Applied Physics, vol. 104, p. 013521, 2008/07/01 2008.
[27] Q. An, A. Jaramillo-Botero, W.-G. Liu, and W. A. Goddard III, "Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgallium and Hydrazine Using First Principle Calculations," The Journal of Physical Chemistry C, vol. 119, pp. 4095-4103, 2015.
[28] S. J. Tan, D. Do, and D. Nicholson, "A new kinetic Monte Carlo scheme with Gibbs ensemble to determine vapour–liquid equilibria," Molecular Simulation, vol. 43, pp. 76-85, 2017.
[29] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, pp. 1022-1031, 2002.
[30] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, "AlGaN/GaN HEMT With 300-GHz fmax," IEEE Electron Device Letters, vol. 31, pp. 195-197, 2010.
[31] F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, et al., "Power performance at 40 GHz on quaternary barrier InAlGaN/GaN HEMT," IEEE Electron Device Letters, vol. 34, pp. 978-980, 2013.
[32] H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P. R. Chalker, et al., "The 2018 GaN power electronics roadmap," Journal of Physics D: Applied Physics, vol. 51, p. 163001, 2018.
[33] I. Sanyal, Y.-C. Lee, Y.-C. Chen, and J.-I. Chyi, "Achieving high electron mobility in AlInGaN/GaN heterostructures: The correlation between thermodynamic stability and electron transport properties," Applied Physics Letters, vol. 114, p. 222103, 2019.
[34] M. Gonschorek, J.-F. Carlin, E. Feltin, M. Py, and N. Grandjean, "High electron mobility lattice-matched Al In N∕ Ga N field-effect transistor heterostructures," Applied physics letters, vol. 89, p. 062106, 2006.
[35] E. A. Henriksen, S. Syed, Y. Ahmadian, M. J. Manfra, K. W. Baldwin, A. M. Sergent, et al., "Acoustic phonon scattering in a low density, high mobility AlGaN∕GaN field-effect transistor," Applied Physics Letters, vol. 86, p. 252108, 2005/06/20 2005.
[36] Y. J. Chai, Y. H. Zan, and S. L. Ban, "Effect of optical phonons scattering on electron mobility in asymmetric AlGaN/GaN quantum wells," Superlattices and Microstructures, vol. 139, p. 106398, 2020/03/01/ 2020.
[37] L. Wang, W. Hu, X. Chen, and W. Lu, "Analysis of Interface Scattering in AlGaN/GaN/InGaN/GaN Double-Heterojunction High-Electron-Mobility Transistors," Journal of Electronic Materials, vol. 41, pp. 2130-2138, 2012/08/01 2012.
[38] B. Yang, Y.-H. Cheng, Z.-G. Wang, J.-B. Liang, Q.-W. Liao, L.-Y. Lin, et al., "Influence of Interface Roughness Scattering on Electron Mobility in GaAs-Al0.3Ga0.7 as Two Dimensional Electron Gas (2DEG) Heterostructures," MRS Proceedings, vol. 355, p. 545, 2011.
[39] S. W. Kaun, P. G. Burke, M. Hoi Wong, E. C. H. Kyle, U. K. Mishra, and J. S. Speck, "Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures," Applied Physics Letters, vol. 101, p. 262102, 2012/12/24 2012.
[40] S. B. Lisesivdin, A. Yildiz, N. Balkan, M. Kasap, S. Ozcelik, and E. Ozbay, "Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method," Journal of Applied Physics, vol. 108, p. 013712, 2010/07/01 2010.
[41] C. Wood and D. Jena, Polarization effects in semiconductors: from ab initio theory to device applications: Springer Science & Business Media, 2007.
[42] E. Tiras, S. Ardali, E. Arslan, and E. Ozbay, "Energy Relaxation Rates in AlInN/AlN/GaN Heterostructures," Journal of Electronic Materials, vol. 41, pp. 2350-2361, 2012/09/01 2012.
[43] P. Cui, Y. Lv, C. Fu, H. Liu, A. Cheng, C. Luan, et al., "Effect of Polarization Coulomb Field Scattering on Electrical Properties of the 70-nm Gate-Length AlGaN/GaN HEMTs," Scientific Reports, vol. 8, p. 12850, 2018/08/27 2018.
[44] P. Cui, Y. Lv, H. Liu, A. Cheng, C. Fu, and Z. Lin, "Improved Linearity with Polarization Coulomb Field Scattering in AlGaN/GaN Heterostructure Field-Effect Transistors," Scientific Reports, vol. 8, p. 983, 2018/01/17 2018.
[45] E. Ahmadi, S. Keller, and U. K. Mishra, "Model to explain the behavior of 2DEG mobility with respect to charge density in N-polar and Ga-polar AlGaN-GaN heterostructures," Journal of Applied Physics, vol. 120, p. 115302, 2016/09/21 2016.
[46] H. S. Haddara and M. El-Sayed, "Conductance technique in MOSFETs: Study of interface trap properties in the depletion and weak inversion regimes," Solid-State Electronics, vol. 31, pp. 1289-1298, 1988/08/01/ 1988.
[47] W. M. Waller, S. Karboyan, M. J. Uren, K. B. Lee, P. A. Houston, D. J. Wallis, et al., "Interface State Artefact in Long Gate-Length AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 62, pp. 2464-2469, 2015.
[48] J. W. Chung, X. Zhao, and T. Palacios, "Estimation of Trap Density in AlGaN/GaN HEMTs from Subthreshold Slope Study," in 2007 65th Annual Device Research Conference, 2007, pp. 111-112.
[49] O. S. Koksaldi, J. Haller, H. Li, B. Romanczyk, M. Guidry, S. Wienecke, et al., "N-Polar GaN HEMTs Exhibiting Record Breakdown Voltage Over 2000 V and Low Dynamic On-Resistance," IEEE Electron Device Letters, 2018.
[50] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, et al., "InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz," IEEE Electron Device Letters, vol. 33, pp. 988-990, 2012.
[51] B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, et al., "Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs," IEEE Transactions on Electron Devices, vol. 65, pp. 45-50, 2018.
[52] P. Sung Park, D. N. Nath, S. Krishnamoorthy, and S. Rajan, "Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization," Applied Physics Letters, vol. 100, p. 063507, 2012.
[53] L. Lugani, J.-F. Carlin, M. A. Py, D. Martin, F. Rossi, G. Salviati, et al., "Ultrathin InAlN/GaN heterostructures on sapphire for high on/off current ratio high electron mobility transistors," Journal of Applied Physics, vol. 113, p. 214503, 2013.
[54] G. Zhao, X. Xu, H. Li, H. Wei, D. Han, Z. Ji, et al., "The immiscibility of InAlN ternary alloy," Scientific Reports, vol. 6, p. 26600, 05/25/online 2016.
[55] A. Minj, D. Cavalcoli, and A. Cavallini, "Indium segregation in AlInN/AlN/GaN heterostructures," Applied Physics Letters, vol. 97, p. 132114, 2010.
[56] A. Senichev, T. Nguyen, R. Diaz, B. Dzuba, M. Shirazi-HD, Y. Cao, et al., "Evolution of indium segregation in metal-polar In0. 17Al0. 83N lattice-matched to GaN grown by plasma assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 500, pp. 52-57, 2018.
[57] J. Xue, Y. Hao, X. Zhou, J. Zhang, C. Yang, X. Ou, et al., "High quality InAlN/GaN heterostructures grown on sapphire by pulsed metal organic chemical vapor deposition," Journal of Crystal Growth, vol. 314, pp. 359-364, 2011.
[58] K. Jeganathan, M. Shimizu, H. Okumura, Y. Yano, and N. Akutsu, "Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy," Journal of crystal growth, vol. 304, pp. 342-345, 2007.
[59] T. Lim, R. Aidam, L. Kirste, P. Waltereit, R. Quay, S. Müller, et al., "Compositional variation of nearly lattice-matched InAlGaN alloys for high electron mobility transistors," Applied Physics Letters, vol. 96, p. 252108, 2010.
[60] N. Ketteniss, L. R. Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R. Jansen, et al., "Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates," Semiconductor Science and Technology, vol. 25, p. 075013, 2010.
[61] J. Leitner, J. Stejskal, and P. Voňka, "Thermodynamic modeling of AlGaInN growth by MOVPE," Journal of crystal growth, vol. 267, pp. 8-16, 2004.
[62] T. Takayama, M. Yuri, K. Itoh, T. Baba, and J. Harris Jr, "Analysis of phase-separation region in wurtzite group III nitride quaternary material system using modified valence force field model," Journal of crystal growth, vol. 222, pp. 29-37, 2001.
[63] T. Lim, R. Aidam, P. Waltereit, T. Henkel, R. Quay, R. Lozar, et al., "GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE," IEEE Electron Device Letters, vol. 31, pp. 671-673, 2010.
[64] R. Asomoza, V. Elyukhin, and R. Pena-Sierra, "Spinodal decomposition in the B x Ga y In 1− x− y As alloys," Applied Physics Letters, vol. 78, pp. 2494-2496, 2001.
[65] R. Asomoza, V. A. Elyukhin, and R. Peña-Sierra, "Spinodal decomposition range of InxGa1−xNyAs1−y alloys," Applied Physics Letters, vol. 81, pp. 1785-1787, 2002.
[66] G. Stringfellow, "Spinodal decomposition and clustering in III/V alloys," Journal of Electronic Materials, vol. 11, pp. 903-918, 1982.
[67] H. Sonomura, H. Uda, A. Sugimura, A. Ashida, H. Horinaka, and T. Miyauchi, "A correlation between the enthalpy of mixing and the internal strain energy in the III‐V alloy semiconductor system," Journal of Applied Physics, vol. 62, pp. 4142-4145, 1987/11/15 1987.
[68] G. B. Stringfellow, "Miscibility gaps and spinodal decomposition in III/V quaternary alloys of the type AxByC1−x−yD," Journal of Applied Physics, vol. 54, pp. 404-409, 1983.
[69] Y. Cao, H. Xing, and D. Jena, "Polarization-mediated remote surface roughness scattering in ultrathin barrier GaN high-electron mobility transistors," Applied Physics Letters, vol. 97, p. 222116, 2010/11/29 2010.
[70] B. Liu, Y. W. Lu, G. R. Jin, Y. Zhao, X. L. Wang, Q. S. Zhu, et al., "Surface roughness scattering in two dimensional electron gas channel," Applied Physics Letters, vol. 97, p. 262111, 2010/12/27 2010.
[71] R. Wang, G. Li, J. Verma, B. Sensale-Rodriguez, T. Fang, J. Guo, et al., "220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs," IEEE Electron Device Letters, vol. 32, pp. 1215-1217, 2011.
[72] N. Ketteniss, H. Behmenburg, H. Hahn, A. Noculak, B. Hollander, H. Kalisch, et al., "Quaternary Enhancement-Mode HFET With In Situ SiN Passivation," IEEE Electron Device Letters, vol. 33, pp. 519-521, 2012.
[73] J. Zhang, X. Yang, J. Cheng, Y. Feng, P. Ji, A. Hu, et al., "Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality," Applied Physics Letters, vol. 110, p. 172101, 2017.
[74] O. S. Koksaldi, J. Haller, H. Li, B. Romanczyk, M. Guidry, S. Wienecke, et al., "N-Polar GaN HEMTs Exhibiting Record Breakdown Voltage Over 2000 V and Low Dynamic On-Resistance," IEEE Electron Device Letters, vol. 39, pp. 1014-1017, 2018.
[75] H. Chandrasekar, M. J. Uren, M. A. Casbon, H. Hirshy, A. Eblabla, K. Elgaid, et al., "Quantifying Temperature-Dependent Substrate Loss in GaN-on-Si RF Technology," IEEE Transactions on Electron Devices, vol. 66, pp. 1681-1687, 2019.
[76] S. Arulkumaran, G. I. Ng, S. Vicknesh, H. Wang, K. S. Ang, J. P. Y. Tan, et al., "Direct current and microwave characteristics of sub-micron AlGaN/GaN high-electron-mobility transistors on 8-inch Si (111) substrate," Japanese Journal of Applied Physics, vol. 51, p. 111001, 2012.
[77] A. Eblabla, X. Li, I. Thayne, D. J. Wallis, I. Guiney, and K. Elgaid, "High performance GaN high electron mobility transistors on low resistivity silicon for X -band applications," IEEE Electron Device Letters, vol. 36, pp. 899-901, 2015.
[78] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, pp. 455-457, 1989.
[79] H. S. Yoon, B.-G. Min, J. M. Lee, D. M. Kang, H.-K. Ahn, H. Kim, et al., "Microwave Low-Noise Performance of 0.17um Gate-Length AlGaN/GaN HEMTs on SiC With Wide Head Double-Deck T-Shaped Gate," IEEE Electron Device Letters, vol. 37, pp. 1407-1410, 2016.
[80] K. Ranjan, S. Arulkumaran, G. I. Ng, and S. Vicknesh, "High Johnson’s figure of merit (8.32 THz· V) in 0.15-µm conventional T-gate AlGaN/GaN HEMTs on silicon," Applied Physics Express, vol. 7, p. 044102, 2014.
[81] M. L. Schuette, A. Ketterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, et al., "Gate-recessed integrated E/D GaN HEMT technology with f T/f max> 300 GHz," IEEE Electron Device Letters, vol. 34, pp. 741-743, 2013.
[82] R. Wang, G. Li, G. Karbasian, J. Guo, B. Song, Y. Yue, et al., "Quaternary Barrier InAlGaN HEMTs With fT/fmax of 230/300 GHz," IEEE Electron Device Letters, vol. 34, pp. 378-380, 2013.
[83] S. Huang, K. Wei, G. Liu, Y. Zheng, X. Wang, L. Pang, et al., "High-f_MAX High Johnson′s Figure-of-Merit 0.2-um Gate AlGaN/GaN HEMTs on Silicon Substrate With AlNSiNx Passivation," IEEE Electron Device Letters, vol. 35, pp. 315-317, 2014.
[84] Y.-K. Lin, S. Noda, C.-C. Huang, H.-C. Lo, C.-H. Wu, Q. H. Luc, et al., "High-performance gan moshemts fabricated with ald al 2 o 3 dielectric and nbe gate recess technology for high frequency power applications," IEEE Electron Device Letters, vol. 38, pp. 771-774, 2017.
[85] C.-W. Tsou, C.-Y. Lin, Y.-W. Lian, and S. S. Hsu, "101-GHz InAlN/GaN HEMTs on silicon with high Johnson’s figure-of-merit," IEEE Transactions on Electron Devices, vol. 62, pp. 2675-2678, 2015.
[86] S. L. Zhao, B. Hou, W. W. Chen, M. H. Mi, J. X. Zheng, J. C. Zhang, et al., "Analysis of the breakdown characterization method in GaN-Based HEMTs," IEEE Transactions on power electronics, vol. 31, pp. 1517-1527, 2015.
[87] M. Singh, M. J. Uren, T. Martin, S. Karboyan, H. Chandrasekar, and M. Kuball, "“Kink” in AlGaN/GaN-HEMTs: Floating Buffer Model," IEEE Transactions on Electron Devices, vol. 65, pp. 3746-3753, 2018.
[88] J. Bergsten, M. Thorsell, D. Adolph, J.-T. Chen, O. Kordina, E. Ö. Sveinbjörnsson, et al., "Electron trapping in extended defects in microwave AlGaN/GaN HEMTs with carbon-doped buffers," IEEE Transactions on Electron Devices, vol. 65, pp. 2446-2453, 2018.
[89] L. D. Nguyen, L. E. Larson, and U. K. Mishra, "Ultra-high speed modulation-doped field-effect transistors: a tutorial review," Proceedings of the IEEE, vol. 80, pp. 494-518, 1992.
[90] M. C. Foisy, P. J. Tasker, B. Hughes, and L. F. Eastman, "The role of inefficient charge modulations in limiting the current-gain cutoff frequency of the MODFET," IEEE Transactions on Electron Devices, vol. 35, pp. 871-878, 1988.
[91] D. C. Dumka and P. Saunier, "GaN on Si HEMT with 65% power added efficiency at 10 GHz," Electronics Letters, vol. 46, pp. 946-947, 2010.
[92] O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, et al., "Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process," International Journal of Microwave and Wireless Technologies, vol. 3, pp. 301-309, 2011.
[93] D. Xiao, D. Schreurs, W. De Raedt, J. Derluyn, M. Germain, B. Nauwelaers, et al., "Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs," Solid-State Electronics, vol. 53, pp. 185-189, 2009/02/01/ 2009.
[94] H. Chandrasekar, "Substrate Effects in GaN-on-Silicon RF Device Technology," International Journal of High Speed Electronics and Systems, vol. 28, p. 1940001, 2019.
[95] L. Wei, X. Yang, J. Shen, D. Liu, Z. Cai, C. Ma, et al., "Al diffusion at AlN/Si interface and its suppression through substrate nitridation," Applied Physics Letters, vol. 116, p. 232105, 2020.
[96] T. T. Luong, F. Lumbantoruan, Y.-Y. Chen, Y.-T. Ho, Y.-C. Weng, Y.-C. Lin, et al., "RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface," physica status solidi (a), vol. 214, p. 1600944, 2017.
[97] F. Berber, D. W. Johnson, K. M. Sundqvist, E. L. Piner, G. H. Huff, and H. R. Harris, "RF Dielectric Loss Due to MOCVD Aluminum Nitride on High Resistivity Silicon," IEEE Transactions on Microwave Theory and Techniques, vol. 65, pp. 1465-1470, 2017.
[98] L. Pattison, T. Boles, N. Tuffy, and G. Lopes, "Improving GaN on Si Power Amplifiers through reduction of parasitic conduction layer," in 2014 9th European Microwave Integrated Circuit Conference, 2014, pp. 92-95.
|