博碩士論文 105621008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.43.11
姓名 劉博凱(Bo-Kai Liu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用WRF模式模擬雙北都會區夏季暴雨觀測預報實驗:2017/07/01 午後熱對流個案
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位於亞洲大陸東南方,夏天盛行西南風,容易帶來豐沛的水
氣,加上白天海風發展,兩者與地形交互作用容易產生午後熱對流。
然而,因複雜的地形又缺乏密集的觀測,過去對午後熱對流發展與演
變的相關研究相當有限,故本研究利用WRF 以及2017 雙北都會區
夏季暴雨觀測預報實驗(TASSE)的觀測資料來分析與模擬2017 年7
月1 日午後熱對流強降雨事件的發展及其相關的物理過程。
觀測資料顯示此個案之對流系統在中央山脈及雪山山脈迎風處
開始發展並逐漸的往北移動發展,為北部地區帶來降雨,時累積雨量
超過100 mm,造成許多地區的道路淹水。
本研究發現,受到綜觀環境的影響,偏南風的盛行風將暖濕的空
氣輸送至台灣附近,提供大氣不穩定條件。TASSE 觀測資料分析顯
示,發生午後熱對流時海風發展的高度較高,且有明顯的對流不穩定
層。比對觀測資料與模擬結果顯示,受環境風場與地形產生的繞流及
海風發展的影響,台北盆地與北部山區有明顯風場輻合,午後對流系
統於13LST 在山區形成,透過系統發展位置的垂直剖面可以看到,
風場在山區迎風面與地形交互作用,產生輻合與抬升有利於對流之形
成,從本個案的分析模擬發現海陸風發展及地形效應是對流系統生成
的重要關鍵。
接著透過模式進行地形與地表熱通量的敏感度測試,發現當缺少
地形阻擋,環境風場能夠直接影響陸上風場,使得系統發展的位置較
靠近沿岸,同時因為少了地形抬升,降水強度也弱了許多。當地表熱
通量移除後,海陸溫差變小,熱力環流減弱,故海陸風發展不易,對
流系統主要來自環境風場與地形的交互作用而形成,導致降雨區只集
中在山區迎風面,故透過模式的敏感度測試可以了解地形與地表熱通
量對於午後熱對流的重要性。
摘要(英) Taiwan is located in Southeast of Asia, prevailing southwest monsoon wind, and developing sea breeze usually affect local weather during daytime. Both factors interact with terrain providing a favorable condition to develop afternoon convection. However, due to lack of intensive observation stations and long-term data, related studies on the afternoon convection and local circulation are limited. In this study, WRF and observation data of TASSE were used to simulate and analyze the key factors resulted in the development of the afternoon convection occurred on July 1, 2017.
According to the composite reflectivity images on July 1, 2017, convective system began to develop in the windward of the Central Mountain Range and Snow Mountain Range, and gradually moved and spread northward. It brought rainfall to the north of Taiwan, and the maximum hourly accumulated rainfall exceeded 100 mm, caused flooding in many roads of towns. This paper found that under the influence of weak synoptic environment, the south component of wind brought warm moist air to Taiwan, provided the conditions of the atmospheric instability. The analysis of TASSE observation data showed that the height of the development of the sea breeze was higher,
also had obvious convectively unstable layer. After comparing observations with simulation results showed that convective systems organized at 13 LST in the mountains. Meanwhile, the model result showed that topographic affected surrounding flow and interacted with the development of the sea breeze, there is obvious
convergence wind flow in Taipei basin and northern mountain. We can see the wind field on the windward interacts with terrain and cause uplifting through the cross section analysis of the convective system position. From the analysis of this case, the key factors responsible for the generation of the system is the development of sea breeze and topographic effects.
Based on the sensitivity tests of terrain and surface heat flux, we found that the environmental flow can directly affect the onshore wind field when there is no
terrain blocking, and make the position of convective system closer to the coast. Meanwhile, because of the lack of the terrain, the precipitation intensity is much smaller. After the surface heat flux being removed, the thermal circulation is weakened. Thus, the sea and land breeze is difficult to develop, most of the convective system is resulted from the interaction between the environmental wind field and the terrain, leading to
the rain area only concentrated in the windward side of the mountain. Through the sensitivity test of the model, we could understand the importance of these two factors
for afternoon heat convection.
關鍵字(中) ★ 海陸風 關鍵字(英)
論文目次 摘要 ............................................................................................................................................ i
致謝 ........................................................................................................................................... v
目錄 .......................................................................................................................................... vi
表目錄 ..................................................................................................................................... vii
圖目錄 .................................................................................................................................... viii
第一章 緒論 ..............................................................................................................................1
1-1 前言 .................................................................................................................................1
1-2 文獻回顧 ..........................................................................................................................1
1-3 研究動機 ..........................................................................................................................5
第二章 使用資料及方法 ..........................................................................................................6
2-1 觀測實驗介紹 ..................................................................................................................6
2-2 本研究使用的資料 ..........................................................................................................6
2-3 模式介紹 ..........................................................................................................................7
2-4 模式設定 ..........................................................................................................................8
第三章 天氣分析 ................................................................................................................... 10
3-1 綜觀天氣分析 ............................................................................................................... 10
3-2 地面測站分析 ............................................................................................................... 12
3-2-1 測風氣球與探空資料分析 ................................................................................... 12
3-2-2 地面測站分析 ....................................................................................................... 14
第四章 模式模擬結果分析 ................................................................................................... 15
4-1 模式結果比對、分析與討論 ....................................................................................... 15
4-2 模式敏感度測試 ........................................................................................................... 17
4-2-1 地形敏感度測試 ................................................................................................... 17
4-2-2 地表熱通量敏感度測試 ....................................................................................... 18
第五章 結論與未來展望 ....................................................................................................... 20
5-1 結論 ............................................................................................................................... 20
5-2 未來展望 ....................................................................................................................... 22
參考文獻 ............................................................................................................................. 23
參考文獻 Brewer, M. C., and C. F. Mass, 2014: Simulation of summer
diurnal circulations over the northwest United States.
Wea. Forecasting, 29, 1208–1228.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land-
surface–hydrology model with the Penn State–NCAR MM5
modeling system. Part I: Model implementation and
sensitivity. Mon. Wea. Rev., 129, 569–585.

Chen, C.-S., and Y.-L. Chen, 2003: The rainfall
characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–
1341.

Chen, T. C., S. Y. Wang, and M. C. Yen, 2007: Enhancement
of afternoon thunderstorm activity by urbanization in
a Valley: Taipei. J. Appl. Meteor. Climatol., 46,
1324–1340.

Chen, C. S., C. L. Liu, M. C. Yen, C. Y. Chen, P. L. Lin,
C. Y. Huang, and J. H. Teng, 2010: Terrain effects on
an afternoon heavy rainfall event, observed over
northern Taiwan on 20 June 2000 during monsoon break.
J. Meteorol. Soc. Jpn. 88, 649–671.

Chen, T.-C, M.-C. Yen, J.-D. Tsay, C.-C. Liao, E. S.
Takle, 2014: Impact of Afternoon Thunderstorms on the
Land–Sea Breeze in the Taipei Basin during Summer: An
Experiment. J. Appl. Meteor. Climatol., 53, 1714–1738.

Chen, T.-C, J.-D. Tsay, E. S. Takle, 2016: A Forecast
Advisory for Afternoon Thunderstorm Occurrence in the
Taipei Basin during Summer Developed from Diagnostic
Analysis. Wea. Forecasting, 31, 531-552.

Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical
diffusion package with an explicit treatment of
entrainment processes. Mon. Wea. Rev., 134, 2318–
2341.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W.
Shepard, S. A. Clough, andW. D. Collins, 2008:
Radiative forcing by long-lived greenhouse
gases:Calculations with the AER radiative transfer
models. J. Geophys. Res., 113, D13103,
doi:10.1029/2008JD009944. 24

Jimenez, P. A., and J. Dudhia, 2012: Improving the
representation of resolved and unresolved topographic
effects on surface wind in the WRF Model. J. Appl.
Meteor.Climatol., 51, 300–316

Lin, P. F., P. L. Chang, B. J.-D. Jou, J. W. Wilson, and
R. D. Roberts, 2011: Warm season afternoon
thunderstorm characteristics under weak synoptic-scale
forcing over Taiwan Island. Wea. Forecasting, 26, 44–
60.

Kain, J. S., 2004: The Kain–Fritsch convective
parameterization: An update. J. Appl. Meteor., 43,
170–181.

Kerns, B. W. J., Y. L. Chen, and M. Y. Chang, 2010: The
diurnal cycle of winds, rain, and clouds over Taiwan
during the mei-yu, summer, and autumn rainfall
regimes. Mon. Wea. Rev., 138, 497–516.

Tao, W.-K., and Coauthors, 2003: Microphysics, radiation
and surface processes in the Goddard Cumulus Ensemble
(GCE) model. Meteor. Atmos. Phys., 82, 97– 137.

張惠玲,1997:台灣地區午後流降水之研究。國立中央大學,大氣物理研究所碩士論文,130 頁。

林品芳、張保亮、周仲島,2012 : 弱綜觀環境下台灣午後對流特徵及其客觀預報。大氣科學,40(1),77-108。
指導教授 林沛練(Pay-Liam Lin) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明